| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpw2g |
|
| 2 |
1
|
biimprd |
|
| 3 |
2
|
ralimdv |
|
| 4 |
3
|
imp |
|
| 5 |
|
eqid |
|
| 6 |
5
|
fmpt |
|
| 7 |
4 6
|
sylib |
|
| 8 |
|
elrfirn |
|
| 9 |
7 8
|
syldan |
|
| 10 |
|
inss1 |
|
| 11 |
10
|
sseli |
|
| 12 |
11
|
elpwid |
|
| 13 |
|
nffvmpt1 |
|
| 14 |
|
nfcv |
|
| 15 |
|
fveq2 |
|
| 16 |
13 14 15
|
cbviin |
|
| 17 |
|
simplr |
|
| 18 |
|
simpll |
|
| 19 |
|
simpr |
|
| 20 |
18 19
|
ssexd |
|
| 21 |
5
|
fvmpt2 |
|
| 22 |
17 20 21
|
syl2anc |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
ralimdva |
|
| 25 |
24
|
imp |
|
| 26 |
|
ssralv |
|
| 27 |
25 26
|
mpan9 |
|
| 28 |
|
iineq2 |
|
| 29 |
27 28
|
syl |
|
| 30 |
16 29
|
eqtrid |
|
| 31 |
30
|
ineq2d |
|
| 32 |
31
|
eqeq2d |
|
| 33 |
12 32
|
sylan2 |
|
| 34 |
33
|
rexbidva |
|
| 35 |
9 34
|
bitrd |
|