Metamath Proof Explorer


Theorem elrfirn2

Description: Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion elrfirn2 BVyICBAfiBranyICv𝒫IFinA=ByvC

Proof

Step Hyp Ref Expression
1 elpw2g BVC𝒫BCB
2 1 biimprd BVCBC𝒫B
3 2 ralimdv BVyICByIC𝒫B
4 3 imp BVyICByIC𝒫B
5 eqid yIC=yIC
6 5 fmpt yIC𝒫ByIC:I𝒫B
7 4 6 sylib BVyICByIC:I𝒫B
8 elrfirn BVyIC:I𝒫BAfiBranyICv𝒫IFinA=BzvyICz
9 7 8 syldan BVyICBAfiBranyICv𝒫IFinA=BzvyICz
10 inss1 𝒫IFin𝒫I
11 10 sseli v𝒫IFinv𝒫I
12 11 elpwid v𝒫IFinvI
13 nffvmpt1 _yyICz
14 nfcv _zyICy
15 fveq2 z=yyICz=yICy
16 13 14 15 cbviin zvyICz=yvyICy
17 simplr BVyICByI
18 simpll BVyICBBV
19 simpr BVyICBCB
20 18 19 ssexd BVyICBCV
21 5 fvmpt2 yICVyICy=C
22 17 20 21 syl2anc BVyICByICy=C
23 22 ex BVyICByICy=C
24 23 ralimdva BVyICByIyICy=C
25 24 imp BVyICByIyICy=C
26 ssralv vIyIyICy=CyvyICy=C
27 25 26 mpan9 BVyICBvIyvyICy=C
28 iineq2 yvyICy=CyvyICy=yvC
29 27 28 syl BVyICBvIyvyICy=yvC
30 16 29 eqtrid BVyICBvIzvyICz=yvC
31 30 ineq2d BVyICBvIBzvyICz=ByvC
32 31 eqeq2d BVyICBvIA=BzvyICzA=ByvC
33 12 32 sylan2 BVyICBv𝒫IFinA=BzvyICzA=ByvC
34 33 rexbidva BVyICBv𝒫IFinA=BzvyICzv𝒫IFinA=ByvC
35 9 34 bitrd BVyICBAfiBranyICv𝒫IFinA=ByvC