Metamath Proof Explorer


Theorem elrsp

Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses elrsp.n N = RSpan R
elrsp.b B = Base R
elrsp.1 0 ˙ = 0 R
elrsp.x · ˙ = R
elrsp.r φ R Ring
elrsp.i φ I B
Assertion elrsp φ X N I a B I finSupp 0 ˙ a X = R i I a i · ˙ i

Proof

Step Hyp Ref Expression
1 elrsp.n N = RSpan R
2 elrsp.b B = Base R
3 elrsp.1 0 ˙ = 0 R
4 elrsp.x · ˙ = R
5 elrsp.r φ R Ring
6 elrsp.i φ I B
7 rspval RSpan R = LSpan ringLMod R
8 1 7 eqtri N = LSpan ringLMod R
9 rlmbas Base R = Base ringLMod R
10 2 9 eqtri B = Base ringLMod R
11 eqid Base Scalar ringLMod R = Base Scalar ringLMod R
12 eqid Scalar ringLMod R = Scalar ringLMod R
13 eqid 0 Scalar ringLMod R = 0 Scalar ringLMod R
14 rlmvsca R = ringLMod R
15 4 14 eqtri · ˙ = ringLMod R
16 rlmlmod R Ring ringLMod R LMod
17 5 16 syl φ ringLMod R LMod
18 8 10 11 12 13 15 17 6 ellspds φ X N I a Base Scalar ringLMod R I finSupp 0 Scalar ringLMod R a X = ringLMod R i I a i · ˙ i
19 rlmsca R Ring R = Scalar ringLMod R
20 5 19 syl φ R = Scalar ringLMod R
21 20 fveq2d φ Base R = Base Scalar ringLMod R
22 2 21 eqtrid φ B = Base Scalar ringLMod R
23 22 oveq1d φ B I = Base Scalar ringLMod R I
24 20 fveq2d φ 0 R = 0 Scalar ringLMod R
25 3 24 eqtrid φ 0 ˙ = 0 Scalar ringLMod R
26 25 breq2d φ finSupp 0 ˙ a finSupp 0 Scalar ringLMod R a
27 2 fvexi B V
28 27 a1i φ B V
29 28 6 ssexd φ I V
30 29 mptexd φ i I a i · ˙ i V
31 9 a1i φ Base R = Base ringLMod R
32 rlmplusg + R = + ringLMod R
33 32 a1i φ + R = + ringLMod R
34 30 5 17 31 33 gsumpropd φ R i I a i · ˙ i = ringLMod R i I a i · ˙ i
35 34 eqeq2d φ X = R i I a i · ˙ i X = ringLMod R i I a i · ˙ i
36 26 35 anbi12d φ finSupp 0 ˙ a X = R i I a i · ˙ i finSupp 0 Scalar ringLMod R a X = ringLMod R i I a i · ˙ i
37 23 36 rexeqbidv φ a B I finSupp 0 ˙ a X = R i I a i · ˙ i a Base Scalar ringLMod R I finSupp 0 Scalar ringLMod R a X = ringLMod R i I a i · ˙ i
38 18 37 bitr4d φ X N I a B I finSupp 0 ˙ a X = R i I a i · ˙ i