Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elrsp.n | |
|
elrsp.b | |
||
elrsp.1 | |
||
elrsp.x | |
||
elrsp.r | |
||
elrsp.i | |
||
Assertion | elrsp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrsp.n | |
|
2 | elrsp.b | |
|
3 | elrsp.1 | |
|
4 | elrsp.x | |
|
5 | elrsp.r | |
|
6 | elrsp.i | |
|
7 | rspval | |
|
8 | 1 7 | eqtri | |
9 | rlmbas | |
|
10 | 2 9 | eqtri | |
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | rlmvsca | |
|
15 | 4 14 | eqtri | |
16 | rlmlmod | |
|
17 | 5 16 | syl | |
18 | 8 10 11 12 13 15 17 6 | ellspds | |
19 | rlmsca | |
|
20 | 5 19 | syl | |
21 | 20 | fveq2d | |
22 | 2 21 | eqtrid | |
23 | 22 | oveq1d | |
24 | 20 | fveq2d | |
25 | 3 24 | eqtrid | |
26 | 25 | breq2d | |
27 | 2 | fvexi | |
28 | 27 | a1i | |
29 | 28 6 | ssexd | |
30 | 29 | mptexd | |
31 | 9 | a1i | |
32 | rlmplusg | |
|
33 | 32 | a1i | |
34 | 30 5 17 31 33 | gsumpropd | |
35 | 34 | eqeq2d | |
36 | 26 35 | anbi12d | |
37 | 23 36 | rexeqbidv | |
38 | 18 37 | bitr4d | |