Metamath Proof Explorer


Theorem elrsp

Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses elrsp.n N=RSpanR
elrsp.b B=BaseR
elrsp.1 0˙=0R
elrsp.x ·˙=R
elrsp.r φRRing
elrsp.i φIB
Assertion elrsp φXNIaBIfinSupp0˙aX=RiIai·˙i

Proof

Step Hyp Ref Expression
1 elrsp.n N=RSpanR
2 elrsp.b B=BaseR
3 elrsp.1 0˙=0R
4 elrsp.x ·˙=R
5 elrsp.r φRRing
6 elrsp.i φIB
7 rspval RSpanR=LSpanringLModR
8 1 7 eqtri N=LSpanringLModR
9 rlmbas BaseR=BaseringLModR
10 2 9 eqtri B=BaseringLModR
11 eqid BaseScalarringLModR=BaseScalarringLModR
12 eqid ScalarringLModR=ScalarringLModR
13 eqid 0ScalarringLModR=0ScalarringLModR
14 rlmvsca R=ringLModR
15 4 14 eqtri ·˙=ringLModR
16 rlmlmod RRingringLModRLMod
17 5 16 syl φringLModRLMod
18 8 10 11 12 13 15 17 6 ellspds φXNIaBaseScalarringLModRIfinSupp0ScalarringLModRaX=ringLModRiIai·˙i
19 rlmsca RRingR=ScalarringLModR
20 5 19 syl φR=ScalarringLModR
21 20 fveq2d φBaseR=BaseScalarringLModR
22 2 21 eqtrid φB=BaseScalarringLModR
23 22 oveq1d φBI=BaseScalarringLModRI
24 20 fveq2d φ0R=0ScalarringLModR
25 3 24 eqtrid φ0˙=0ScalarringLModR
26 25 breq2d φfinSupp0˙afinSupp0ScalarringLModRa
27 2 fvexi BV
28 27 a1i φBV
29 28 6 ssexd φIV
30 29 mptexd φiIai·˙iV
31 9 a1i φBaseR=BaseringLModR
32 rlmplusg +R=+ringLModR
33 32 a1i φ+R=+ringLModR
34 30 5 17 31 33 gsumpropd φRiIai·˙i=ringLModRiIai·˙i
35 34 eqeq2d φX=RiIai·˙iX=ringLModRiIai·˙i
36 26 35 anbi12d φfinSupp0˙aX=RiIai·˙ifinSupp0ScalarringLModRaX=ringLModRiIai·˙i
37 23 36 rexeqbidv φaBIfinSupp0˙aX=RiIai·˙iaBaseScalarringLModRIfinSupp0ScalarringLModRaX=ringLModRiIai·˙i
38 18 37 bitr4d φXNIaBIfinSupp0˙aX=RiIai·˙i