Metamath Proof Explorer


Theorem en2other2

Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion en2other2 XPP2𝑜PPX=X

Proof

Step Hyp Ref Expression
1 en2eleq XPP2𝑜P=XPX
2 prcom XPX=PXX
3 1 2 eqtrdi XPP2𝑜P=PXX
4 3 difeq1d XPP2𝑜PPX=PXXPX
5 difprsnss PXXPXX
6 4 5 eqsstrdi XPP2𝑜PPXX
7 simpl XPP2𝑜XP
8 1onn 1𝑜ω
9 simpr XPP2𝑜P2𝑜
10 df-2o 2𝑜=suc1𝑜
11 9 10 breqtrdi XPP2𝑜Psuc1𝑜
12 dif1ennn 1𝑜ωPsuc1𝑜XPPX1𝑜
13 8 11 7 12 mp3an2i XPP2𝑜PX1𝑜
14 en1uniel PX1𝑜PXPX
15 eldifsni PXPXPXX
16 13 14 15 3syl XPP2𝑜PXX
17 16 necomd XPP2𝑜XPX
18 eldifsn XPPXXPXPX
19 7 17 18 sylanbrc XPP2𝑜XPPX
20 19 snssd XPP2𝑜XPPX
21 6 20 eqssd XPP2𝑜PPX=X
22 21 unieqd XPP2𝑜PPX=X
23 unisng XPX=X
24 23 adantr XPP2𝑜X=X
25 22 24 eqtrd XPP2𝑜PPX=X