| Step |
Hyp |
Ref |
Expression |
| 1 |
|
en2eleq |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } ) |
| 2 |
|
prcom |
⊢ { 𝑋 , ∪ ( 𝑃 ∖ { 𝑋 } ) } = { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } |
| 3 |
1 2
|
eqtrdi |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 = { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } ) |
| 4 |
3
|
difeq1d |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = ( { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ) |
| 5 |
|
difprsnss |
⊢ ( { ∪ ( 𝑃 ∖ { 𝑋 } ) , 𝑋 } ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ⊆ { 𝑋 } |
| 6 |
4 5
|
eqsstrdi |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ⊆ { 𝑋 } ) |
| 7 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ 𝑃 ) |
| 8 |
|
1onn |
⊢ 1o ∈ ω |
| 9 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) |
| 10 |
|
df-2o |
⊢ 2o = suc 1o |
| 11 |
9 10
|
breqtrdi |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ suc 1o ) |
| 12 |
|
dif1ennn |
⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
| 13 |
8 11 7 12
|
mp3an2i |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { 𝑋 } ) ≈ 1o ) |
| 14 |
|
en1uniel |
⊢ ( ( 𝑃 ∖ { 𝑋 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
| 15 |
|
eldifsni |
⊢ ( ∪ ( 𝑃 ∖ { 𝑋 } ) ∈ ( 𝑃 ∖ { 𝑋 } ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |
| 16 |
13 14 15
|
3syl |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { 𝑋 } ) ≠ 𝑋 ) |
| 17 |
16
|
necomd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) |
| 18 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ↔ ( 𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ ( 𝑃 ∖ { 𝑋 } ) ) ) |
| 19 |
7 17 18
|
sylanbrc |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → 𝑋 ∈ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ) |
| 20 |
19
|
snssd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → { 𝑋 } ⊆ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) ) |
| 21 |
6 20
|
eqssd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = { 𝑋 } ) |
| 22 |
21
|
unieqd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = ∪ { 𝑋 } ) |
| 23 |
|
unisng |
⊢ ( 𝑋 ∈ 𝑃 → ∪ { 𝑋 } = 𝑋 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ { 𝑋 } = 𝑋 ) |
| 25 |
22 24
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o ) → ∪ ( 𝑃 ∖ { ∪ ( 𝑃 ∖ { 𝑋 } ) } ) = 𝑋 ) |