Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | dif1card | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diffi | |
|
2 | isfi | |
|
3 | simp3 | |
|
4 | en2sn | |
|
5 | 4 | 3adant3 | |
6 | disjdifr | |
|
7 | 6 | a1i | |
8 | nnord | |
|
9 | ordirr | |
|
10 | 8 9 | syl | |
11 | disjsn | |
|
12 | 10 11 | sylibr | |
13 | 12 | 3ad2ant2 | |
14 | unen | |
|
15 | 3 5 7 13 14 | syl22anc | |
16 | difsnid | |
|
17 | df-suc | |
|
18 | 17 | eqcomi | |
19 | 18 | a1i | |
20 | 16 19 | breq12d | |
21 | 20 | 3ad2ant1 | |
22 | 15 21 | mpbid | |
23 | peano2 | |
|
24 | 23 | 3ad2ant2 | |
25 | cardennn | |
|
26 | 22 24 25 | syl2anc | |
27 | cardennn | |
|
28 | 27 | ancoms | |
29 | 28 | 3adant1 | |
30 | suceq | |
|
31 | 29 30 | syl | |
32 | 26 31 | eqtr4d | |
33 | 32 | 3expib | |
34 | 33 | com12 | |
35 | 34 | rexlimiva | |
36 | 2 35 | sylbi | |
37 | 1 36 | syl | |
38 | 37 | imp | |