Metamath Proof Explorer


Theorem dif1card

Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion dif1card AFinXAcardA=succardAX

Proof

Step Hyp Ref Expression
1 diffi AFinAXFin
2 isfi AXFinmωAXm
3 simp3 XAmωAXmAXm
4 en2sn XAmωXm
5 4 3adant3 XAmωAXmXm
6 disjdifr AXX=
7 6 a1i XAmωAXmAXX=
8 nnord mωOrdm
9 ordirr Ordm¬mm
10 8 9 syl mω¬mm
11 disjsn mm=¬mm
12 10 11 sylibr mωmm=
13 12 3ad2ant2 XAmωAXmmm=
14 unen AXmXmAXX=mm=AXXmm
15 3 5 7 13 14 syl22anc XAmωAXmAXXmm
16 difsnid XAAXX=A
17 df-suc sucm=mm
18 17 eqcomi mm=sucm
19 18 a1i XAmm=sucm
20 16 19 breq12d XAAXXmmAsucm
21 20 3ad2ant1 XAmωAXmAXXmmAsucm
22 15 21 mpbid XAmωAXmAsucm
23 peano2 mωsucmω
24 23 3ad2ant2 XAmωAXmsucmω
25 cardennn AsucmsucmωcardA=sucm
26 22 24 25 syl2anc XAmωAXmcardA=sucm
27 cardennn AXmmωcardAX=m
28 27 ancoms mωAXmcardAX=m
29 28 3adant1 XAmωAXmcardAX=m
30 suceq cardAX=msuccardAX=sucm
31 29 30 syl XAmωAXmsuccardAX=sucm
32 26 31 eqtr4d XAmωAXmcardA=succardAX
33 32 3expib XAmωAXmcardA=succardAX
34 33 com12 mωAXmXAcardA=succardAX
35 34 rexlimiva mωAXmXAcardA=succardAX
36 2 35 sylbi AXFinXAcardA=succardAX
37 1 36 syl AFinXAcardA=succardAX
38 37 imp AFinXAcardA=succardAX