Metamath Proof Explorer


Theorem dif1card

Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion dif1card A Fin X A card A = suc card A X

Proof

Step Hyp Ref Expression
1 diffi A Fin A X Fin
2 isfi A X Fin m ω A X m
3 simp3 X A m ω A X m A X m
4 en2sn X A m ω X m
5 4 3adant3 X A m ω A X m X m
6 incom A X X = X A X
7 disjdif X A X =
8 6 7 eqtri A X X =
9 8 a1i X A m ω A X m A X X =
10 nnord m ω Ord m
11 ordirr Ord m ¬ m m
12 10 11 syl m ω ¬ m m
13 disjsn m m = ¬ m m
14 12 13 sylibr m ω m m =
15 14 3ad2ant2 X A m ω A X m m m =
16 unen A X m X m A X X = m m = A X X m m
17 3 5 9 15 16 syl22anc X A m ω A X m A X X m m
18 difsnid X A A X X = A
19 df-suc suc m = m m
20 19 eqcomi m m = suc m
21 20 a1i X A m m = suc m
22 18 21 breq12d X A A X X m m A suc m
23 22 3ad2ant1 X A m ω A X m A X X m m A suc m
24 17 23 mpbid X A m ω A X m A suc m
25 peano2 m ω suc m ω
26 25 3ad2ant2 X A m ω A X m suc m ω
27 cardennn A suc m suc m ω card A = suc m
28 24 26 27 syl2anc X A m ω A X m card A = suc m
29 cardennn A X m m ω card A X = m
30 29 ancoms m ω A X m card A X = m
31 30 3adant1 X A m ω A X m card A X = m
32 suceq card A X = m suc card A X = suc m
33 31 32 syl X A m ω A X m suc card A X = suc m
34 28 33 eqtr4d X A m ω A X m card A = suc card A X
35 34 3expib X A m ω A X m card A = suc card A X
36 35 com12 m ω A X m X A card A = suc card A X
37 36 rexlimiva m ω A X m X A card A = suc card A X
38 2 37 sylbi A X Fin X A card A = suc card A X
39 1 38 syl A Fin X A card A = suc card A X
40 39 imp A Fin X A card A = suc card A X