Metamath Proof Explorer


Theorem eqvreltr

Description: An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypothesis eqvreltr.1 φEqvRelR
Assertion eqvreltr φARBBRCARC

Proof

Step Hyp Ref Expression
1 eqvreltr.1 φEqvRelR
2 eqvrelrel EqvRelRRelR
3 1 2 syl φRelR
4 simpr ARBBRCBRC
5 brrelex1 RelRBRCBV
6 3 4 5 syl2an φARBBRCBV
7 simpr φARBBRCARBBRC
8 breq2 x=BARxARB
9 breq1 x=BxRCBRC
10 8 9 anbi12d x=BARxxRCARBBRC
11 6 7 10 spcedv φARBBRCxARxxRC
12 simpl ARBBRCARB
13 brrelex1 RelRARBAV
14 3 12 13 syl2an φARBBRCAV
15 brrelex2 RelRBRCCV
16 3 4 15 syl2an φARBBRCCV
17 brcog AVCVARRCxARxxRC
18 14 16 17 syl2anc φARBBRCARRCxARxxRC
19 11 18 mpbird φARBBRCARRC
20 19 ex φARBBRCARRC
21 dfeqvrel2 EqvRelRIdomRRR-1RRRRRelR
22 21 simplbi EqvRelRIdomRRR-1RRRR
23 22 simp3d EqvRelRRRR
24 1 23 syl φRRR
25 24 ssbrd φARRCARC
26 20 25 syld φARBBRCARC