| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erclwwlk.r |
|
| 2 |
|
vex |
|
| 3 |
|
vex |
|
| 4 |
|
vex |
|
| 5 |
1
|
erclwwlkeqlen |
|
| 6 |
5
|
3adant3 |
|
| 7 |
1
|
erclwwlkeqlen |
|
| 8 |
7
|
3adant1 |
|
| 9 |
1
|
erclwwlkeq |
|
| 10 |
9
|
3adant1 |
|
| 11 |
1
|
erclwwlkeq |
|
| 12 |
11
|
3adant3 |
|
| 13 |
|
simpr1 |
|
| 14 |
|
simplr2 |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
16
|
cbvrexvw |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
cbvrexvw |
|
| 21 |
|
eqid |
|
| 22 |
21
|
clwwlkbp |
|
| 23 |
22
|
simp2d |
|
| 24 |
23
|
ad2antlr |
|
| 25 |
|
simpr |
|
| 26 |
24 25
|
cshwcsh2id |
|
| 27 |
26
|
exp5l |
|
| 28 |
27
|
imp41 |
|
| 29 |
28
|
rexlimdva |
|
| 30 |
29
|
rexlimdva2 |
|
| 31 |
20 30
|
syl7bi |
|
| 32 |
17 31
|
biimtrid |
|
| 33 |
32
|
exp31 |
|
| 34 |
33
|
com15 |
|
| 35 |
34
|
impcom |
|
| 36 |
35
|
3adant1 |
|
| 37 |
36
|
impcom |
|
| 38 |
37
|
com13 |
|
| 39 |
38
|
3impia |
|
| 40 |
39
|
impcom |
|
| 41 |
13 14 40
|
3jca |
|
| 42 |
1
|
erclwwlkeq |
|
| 43 |
42
|
3adant2 |
|
| 44 |
41 43
|
syl5ibrcom |
|
| 45 |
44
|
exp31 |
|
| 46 |
45
|
com24 |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
com4t |
|
| 49 |
12 48
|
sylbid |
|
| 50 |
49
|
com25 |
|
| 51 |
10 50
|
sylbid |
|
| 52 |
8 51
|
mpdd |
|
| 53 |
52
|
com24 |
|
| 54 |
6 53
|
mpdd |
|
| 55 |
54
|
impd |
|
| 56 |
2 3 4 55
|
mp3an |
|