Metamath Proof Explorer


Theorem esumeq2

Description: Equality theorem for extended sum. (Contributed by Thierry Arnoux, 24-Dec-2016)

Ref Expression
Assertion esumeq2 kAB=C*kAB=*kAC

Proof

Step Hyp Ref Expression
1 eqid A=A
2 mpteq12 A=AkAB=CkAB=kAC
3 1 2 mpan kAB=CkAB=kAC
4 3 oveq2d kAB=C𝑠*𝑠0+∞tsumskAB=𝑠*𝑠0+∞tsumskAC
5 4 unieqd kAB=C𝑠*𝑠0+∞tsumskAB=𝑠*𝑠0+∞tsumskAC
6 df-esum *kAB=𝑠*𝑠0+∞tsumskAB
7 df-esum *kAC=𝑠*𝑠0+∞tsumskAC
8 5 6 7 3eqtr4g kAB=C*kAB=*kAC