Metamath Proof Explorer


Theorem esumsplit

Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017)

Ref Expression
Hypotheses esumsplit.1 k φ
esumsplit.2 _ k A
esumsplit.3 _ k B
esumsplit.4 φ A V
esumsplit.5 φ B V
esumsplit.6 φ A B =
esumsplit.7 φ k A C 0 +∞
esumsplit.8 φ k B C 0 +∞
Assertion esumsplit φ * k A B C = * k A C + 𝑒 * k B C

Proof

Step Hyp Ref Expression
1 esumsplit.1 k φ
2 esumsplit.2 _ k A
3 esumsplit.3 _ k B
4 esumsplit.4 φ A V
5 esumsplit.5 φ B V
6 esumsplit.6 φ A B =
7 esumsplit.7 φ k A C 0 +∞
8 esumsplit.8 φ k B C 0 +∞
9 2 3 nfun _ k A B
10 unexg A V B V A B V
11 4 5 10 syl2anc φ A B V
12 elun k A B k A k B
13 7 8 jaodan φ k A k B C 0 +∞
14 12 13 sylan2b φ k A B C 0 +∞
15 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
16 xrge0plusg + 𝑒 = + 𝑠 * 𝑠 0 +∞
17 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
18 17 a1i φ 𝑠 * 𝑠 0 +∞ CMnd
19 xrge0tmd 𝑠 * 𝑠 0 +∞ TopMnd
20 19 a1i φ 𝑠 * 𝑠 0 +∞ TopMnd
21 nfcv _ k 0 +∞
22 eqid k A B C = k A B C
23 1 9 21 14 22 fmptdF φ k A B C : A B 0 +∞
24 1 2 4 7 esumel φ * k A C 𝑠 * 𝑠 0 +∞ tsums k A C
25 ssun1 A A B
26 9 2 resmptf A A B k A B C A = k A C
27 25 26 mp1i φ k A B C A = k A C
28 27 oveq2d φ 𝑠 * 𝑠 0 +∞ tsums k A B C A = 𝑠 * 𝑠 0 +∞ tsums k A C
29 24 28 eleqtrrd φ * k A C 𝑠 * 𝑠 0 +∞ tsums k A B C A
30 1 3 5 8 esumel φ * k B C 𝑠 * 𝑠 0 +∞ tsums k B C
31 ssun2 B A B
32 9 3 resmptf B A B k A B C B = k B C
33 31 32 mp1i φ k A B C B = k B C
34 33 oveq2d φ 𝑠 * 𝑠 0 +∞ tsums k A B C B = 𝑠 * 𝑠 0 +∞ tsums k B C
35 30 34 eleqtrrd φ * k B C 𝑠 * 𝑠 0 +∞ tsums k A B C B
36 eqidd φ A B = A B
37 15 16 18 20 11 23 29 35 6 36 tsmssplit φ * k A C + 𝑒 * k B C 𝑠 * 𝑠 0 +∞ tsums k A B C
38 1 9 11 14 37 esumid φ * k A B C = * k A C + 𝑒 * k B C