| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpathpr.v |
|
| 2 |
|
eqid |
|
| 3 |
|
simpl |
|
| 4 |
|
upgruhgr |
|
| 5 |
2
|
uhgrfun |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpr |
|
| 9 |
1 2 3 7 8
|
eupth2 |
|
| 10 |
9
|
fveq2d |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
eleq1d |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
|
hash0 |
|
| 16 |
|
c0ex |
|
| 17 |
16
|
prid1 |
|
| 18 |
15 17
|
eqeltri |
|
| 19 |
18
|
a1i |
|
| 20 |
|
simpr |
|
| 21 |
20
|
neqned |
|
| 22 |
|
fvex |
|
| 23 |
|
fvex |
|
| 24 |
|
hashprg |
|
| 25 |
22 23 24
|
mp2an |
|
| 26 |
21 25
|
sylib |
|
| 27 |
|
2ex |
|
| 28 |
27
|
prid2 |
|
| 29 |
26 28
|
eqeltrdi |
|
| 30 |
12 14 19 29
|
ifbothda |
|
| 31 |
10 30
|
eqeltrd |
|