Metamath Proof Explorer


Theorem eupth2lem3

Description: Lemma for eupth2 . (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypotheses eupth2.v V=VtxG
eupth2.i I=iEdgG
eupth2.g φGUPGraph
eupth2.f φFunI
eupth2.p φFEulerPathsGP
eupth2.h H=VIF0..^N
eupth2.x X=VIF0..^N+1
eupth2.n φN0
eupth2.l φN+1F
eupth2.u φUV
eupth2.o φxV|¬2VtxDegHx=ifP0=PNP0PN
Assertion eupth2lem3 φ¬2VtxDegXUUifP0=PN+1P0PN+1

Proof

Step Hyp Ref Expression
1 eupth2.v V=VtxG
2 eupth2.i I=iEdgG
3 eupth2.g φGUPGraph
4 eupth2.f φFunI
5 eupth2.p φFEulerPathsGP
6 eupth2.h H=VIF0..^N
7 eupth2.x X=VIF0..^N+1
8 eupth2.n φN0
9 eupth2.l φN+1F
10 eupth2.u φUV
11 eupth2.o φxV|¬2VtxDegHx=ifP0=PNP0PN
12 eupthiswlk FEulerPathsGPFWalksGP
13 wlkcl FWalksGPF0
14 5 12 13 3syl φF0
15 nn0p1elfzo N0F0N+1FN0..^F
16 8 14 9 15 syl3anc φN0..^F
17 eupthistrl FEulerPathsGPFTrailsGP
18 5 17 syl φFTrailsGP
19 6 fveq2i VtxH=VtxVIF0..^N
20 1 fvexi VV
21 2 fvexi IV
22 21 resex IF0..^NV
23 20 22 opvtxfvi VtxVIF0..^N=V
24 19 23 eqtri VtxH=V
25 24 a1i φVtxH=V
26 snex FNIFNV
27 20 26 opvtxfvi VtxVFNIFN=V
28 27 a1i φVtxVFNIFN=V
29 7 fveq2i VtxX=VtxVIF0..^N+1
30 21 resex IF0..^N+1V
31 20 30 opvtxfvi VtxVIF0..^N+1=V
32 29 31 eqtri VtxX=V
33 32 a1i φVtxX=V
34 6 fveq2i iEdgH=iEdgVIF0..^N
35 20 22 opiedgfvi iEdgVIF0..^N=IF0..^N
36 34 35 eqtri iEdgH=IF0..^N
37 36 a1i φiEdgH=IF0..^N
38 20 26 opiedgfvi iEdgVFNIFN=FNIFN
39 38 a1i φiEdgVFNIFN=FNIFN
40 7 fveq2i iEdgX=iEdgVIF0..^N+1
41 20 30 opiedgfvi iEdgVIF0..^N+1=IF0..^N+1
42 40 41 eqtri iEdgX=IF0..^N+1
43 8 nn0zd φN
44 fzval3 N0N=0..^N+1
45 44 eqcomd N0..^N+1=0N
46 43 45 syl φ0..^N+1=0N
47 46 imaeq2d φF0..^N+1=F0N
48 47 reseq2d φIF0..^N+1=IF0N
49 42 48 eqtrid φiEdgX=IF0N
50 2fveq3 k=NIFk=IFN
51 fveq2 k=NPk=PN
52 fvoveq1 k=NPk+1=PN+1
53 51 52 preq12d k=NPkPk+1=PNPN+1
54 50 53 eqeq12d k=NIFk=PkPk+1IFN=PNPN+1
55 5 12 syl φFWalksGP
56 2 upgrwlkedg GUPGraphFWalksGPk0..^FIFk=PkPk+1
57 3 55 56 syl2anc φk0..^FIFk=PkPk+1
58 54 57 16 rspcdva φIFN=PNPN+1
59 1 2 4 16 10 18 25 28 33 37 39 49 11 58 eupth2lem3lem7 φ¬2VtxDegXUUifP0=PN+1P0PN+1