Metamath Proof Explorer


Theorem eupthvdres

Description: Formerly part of proof of eupth2 : The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 26-Feb-2021)

Ref Expression
Hypotheses eupthvdres.v V=VtxG
eupthvdres.i I=iEdgG
eupthvdres.g φGW
eupthvdres.f φFunI
eupthvdres.p φFEulerPathsGP
eupthvdres.h H=VIF0..^F
Assertion eupthvdres φVtxDegH=VtxDegG

Proof

Step Hyp Ref Expression
1 eupthvdres.v V=VtxG
2 eupthvdres.i I=iEdgG
3 eupthvdres.g φGW
4 eupthvdres.f φFunI
5 eupthvdres.p φFEulerPathsGP
6 eupthvdres.h H=VIF0..^F
7 opex VIF0..^FV
8 6 7 eqeltri HV
9 8 a1i φHV
10 6 fveq2i VtxH=VtxVIF0..^F
11 1 fvexi VV
12 2 fvexi IV
13 12 resex IF0..^FV
14 11 13 pm3.2i VVIF0..^FV
15 14 a1i φVVIF0..^FV
16 opvtxfv VVIF0..^FVVtxVIF0..^F=V
17 15 16 syl φVtxVIF0..^F=V
18 10 17 eqtrid φVtxH=V
19 18 1 eqtrdi φVtxH=VtxG
20 6 fveq2i iEdgH=iEdgVIF0..^F
21 opiedgfv VVIF0..^FViEdgVIF0..^F=IF0..^F
22 15 21 syl φiEdgVIF0..^F=IF0..^F
23 20 22 eqtrid φiEdgH=IF0..^F
24 2 eupthf1o FEulerPathsGPF:0..^F1-1 ontodomI
25 5 24 syl φF:0..^F1-1 ontodomI
26 f1ofo F:0..^F1-1 ontodomIF:0..^FontodomI
27 foima F:0..^FontodomIF0..^F=domI
28 25 26 27 3syl φF0..^F=domI
29 28 reseq2d φIF0..^F=IdomI
30 4 funfnd φIFndomI
31 fnresdm IFndomIIdomI=I
32 30 31 syl φIdomI=I
33 23 29 32 3eqtrd φiEdgH=I
34 33 2 eqtrdi φiEdgH=iEdgG
35 3 9 19 34 vtxdeqd φVtxDegH=VtxDegG