Metamath Proof Explorer


Theorem evl1varpw

Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd , the proof is shorter using evls1varpw instead of proving it directly. (Contributed by AV, 15-Sep-2019)

Ref Expression
Hypotheses evl1varpw.q Q=eval1R
evl1varpw.w W=Poly1R
evl1varpw.g G=mulGrpW
evl1varpw.x X=var1R
evl1varpw.b B=BaseR
evl1varpw.e ×˙=G
evl1varpw.r φRCRing
evl1varpw.n φN0
Assertion evl1varpw φQN×˙X=NmulGrpR𝑠BQX

Proof

Step Hyp Ref Expression
1 evl1varpw.q Q=eval1R
2 evl1varpw.w W=Poly1R
3 evl1varpw.g G=mulGrpW
4 evl1varpw.x X=var1R
5 evl1varpw.b B=BaseR
6 evl1varpw.e ×˙=G
7 evl1varpw.r φRCRing
8 evl1varpw.n φN0
9 1 5 evl1fval1 Q=RevalSub1B
10 9 a1i φQ=RevalSub1B
11 2 fveq2i mulGrpW=mulGrpPoly1R
12 3 11 eqtri G=mulGrpPoly1R
13 12 fveq2i G=mulGrpPoly1R
14 6 13 eqtri ×˙=mulGrpPoly1R
15 5 ressid RCRingR𝑠B=R
16 7 15 syl φR𝑠B=R
17 16 eqcomd φR=R𝑠B
18 17 fveq2d φPoly1R=Poly1R𝑠B
19 18 fveq2d φmulGrpPoly1R=mulGrpPoly1R𝑠B
20 19 fveq2d φmulGrpPoly1R=mulGrpPoly1R𝑠B
21 14 20 eqtrid φ×˙=mulGrpPoly1R𝑠B
22 eqidd φN=N
23 17 fveq2d φvar1R=var1R𝑠B
24 4 23 eqtrid φX=var1R𝑠B
25 21 22 24 oveq123d φN×˙X=NmulGrpPoly1R𝑠Bvar1R𝑠B
26 10 25 fveq12d φQN×˙X=RevalSub1BNmulGrpPoly1R𝑠Bvar1R𝑠B
27 eqid RevalSub1B=RevalSub1B
28 eqid R𝑠B=R𝑠B
29 eqid Poly1R𝑠B=Poly1R𝑠B
30 eqid mulGrpPoly1R𝑠B=mulGrpPoly1R𝑠B
31 eqid var1R𝑠B=var1R𝑠B
32 eqid mulGrpPoly1R𝑠B=mulGrpPoly1R𝑠B
33 crngring RCRingRRing
34 5 subrgid RRingBSubRingR
35 7 33 34 3syl φBSubRingR
36 27 28 29 30 31 5 32 7 35 8 evls1varpw φRevalSub1BNmulGrpPoly1R𝑠Bvar1R𝑠B=NmulGrpR𝑠BRevalSub1Bvar1R𝑠B
37 9 eqcomi RevalSub1B=Q
38 37 a1i φRevalSub1B=Q
39 24 eqcomd φvar1R𝑠B=X
40 38 39 fveq12d φRevalSub1Bvar1R𝑠B=QX
41 40 oveq2d φNmulGrpR𝑠BRevalSub1Bvar1R𝑠B=NmulGrpR𝑠BQX
42 26 36 41 3eqtrd φQN×˙X=NmulGrpR𝑠BQX