Metamath Proof Explorer


Theorem evlvvval

Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. (Contributed by SN, 5-Mar-2025)

Ref Expression
Hypotheses evlvvval.q Q=IevalR
evlvvval.p P=ImPolyR
evlvvval.b B=BaseP
evlvvval.d D=h0I|h-1Fin
evlvvval.k K=BaseR
evlvvval.m M=mulGrpR
evlvvval.w ×˙=M
evlvvval.x ·˙=R
evlvvval.i φIV
evlvvval.r φRCRing
evlvvval.f φFB
evlvvval.a φAKI
Assertion evlvvval φQFA=RbDFb·˙MiIbi×˙Ai

Proof

Step Hyp Ref Expression
1 evlvvval.q Q=IevalR
2 evlvvval.p P=ImPolyR
3 evlvvval.b B=BaseP
4 evlvvval.d D=h0I|h-1Fin
5 evlvvval.k K=BaseR
6 evlvvval.m M=mulGrpR
7 evlvvval.w ×˙=M
8 evlvvval.x ·˙=R
9 evlvvval.i φIV
10 evlvvval.r φRCRing
11 evlvvval.f φFB
12 evlvvval.a φAKI
13 eqid IevalSubRBaseR=IevalSubRBaseR
14 eqid ImPolyR𝑠BaseR=ImPolyR𝑠BaseR
15 eqid R𝑠BaseR=R𝑠BaseR
16 eqid BaseImPolyR𝑠BaseR=BaseImPolyR𝑠BaseR
17 10 crngringd φRRing
18 eqid BaseR=BaseR
19 18 subrgid RRingBaseRSubRingR
20 17 19 syl φBaseRSubRingR
21 18 ressid RCRingR𝑠BaseR=R
22 10 21 syl φR𝑠BaseR=R
23 22 oveq2d φImPolyR𝑠BaseR=ImPolyR
24 23 2 eqtr4di φImPolyR𝑠BaseR=P
25 24 fveq2d φBaseImPolyR𝑠BaseR=BaseP
26 25 3 eqtr4di φBaseImPolyR𝑠BaseR=B
27 11 26 eleqtrrd φFBaseImPolyR𝑠BaseR
28 13 1 14 15 16 9 10 20 27 evlsevl φIevalSubRBaseRF=QF
29 28 fveq1d φIevalSubRBaseRFA=QFA
30 13 14 16 15 4 5 6 7 8 9 10 20 27 12 evlsvvval φIevalSubRBaseRFA=RbDFb·˙MiIbi×˙Ai
31 29 30 eqtr3d φQFA=RbDFb·˙MiIbi×˙Ai