Metamath Proof Explorer


Theorem exfo

Description: A relation equivalent to the existence of an onto mapping. The right-hand f is not necessarily a function. (Contributed by NM, 20-Mar-2007)

Ref Expression
Assertion exfo ff:AontoBfxA∃!yBxfyxByAyfx

Proof

Step Hyp Ref Expression
1 dffo4 f:AontoBf:ABxByAyfx
2 dff4 f:ABfA×BxA∃!yBxfy
3 2 simprbi f:ABxA∃!yBxfy
4 3 anim1i f:ABxByAyfxxA∃!yBxfyxByAyfx
5 1 4 sylbi f:AontoBxA∃!yBxfyxByAyfx
6 5 eximi ff:AontoBfxA∃!yBxfyxByAyfx
7 brinxp xAyBxfyxfA×By
8 7 reubidva xA∃!yBxfy∃!yBxfA×By
9 8 biimpd xA∃!yBxfy∃!yBxfA×By
10 9 ralimia xA∃!yBxfyxA∃!yBxfA×By
11 inss2 fA×BA×B
12 10 11 jctil xA∃!yBxfyfA×BA×BxA∃!yBxfA×By
13 dff4 fA×B:ABfA×BA×BxA∃!yBxfA×By
14 12 13 sylibr xA∃!yBxfyfA×B:AB
15 rninxp ranfA×B=BxByAyfx
16 15 biimpri xByAyfxranfA×B=B
17 14 16 anim12i xA∃!yBxfyxByAyfxfA×B:ABranfA×B=B
18 dffo2 fA×B:AontoBfA×B:ABranfA×B=B
19 17 18 sylibr xA∃!yBxfyxByAyfxfA×B:AontoB
20 vex fV
21 20 inex1 fA×BV
22 foeq1 g=fA×Bg:AontoBfA×B:AontoB
23 21 22 spcev fA×B:AontoBgg:AontoB
24 19 23 syl xA∃!yBxfyxByAyfxgg:AontoB
25 24 exlimiv fxA∃!yBxfyxByAyfxgg:AontoB
26 foeq1 g=fg:AontoBf:AontoB
27 26 cbvexvw gg:AontoBff:AontoB
28 25 27 sylib fxA∃!yBxfyxByAyfxff:AontoB
29 6 28 impbii ff:AontoBfxA∃!yBxfyxByAyfx