| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expeqidd.a |
|
| 2 |
|
expeqidd.n |
|
| 3 |
|
expeqidd.0 |
|
| 4 |
|
df-ne |
|
| 5 |
1
|
recnd |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simplr |
|
| 8 |
|
eluz2nn |
|
| 9 |
2 8
|
syl |
|
| 10 |
9
|
nnzd |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
6 7 11
|
expm1d |
|
| 13 |
|
simpr |
|
| 14 |
13
|
oveq1d |
|
| 15 |
6 7
|
dividd |
|
| 16 |
12 14 15
|
3eqtrd |
|
| 17 |
1
|
adantr |
|
| 18 |
|
uz2m1nn |
|
| 19 |
2 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
3
|
adantr |
|
| 22 |
17 20 21
|
expeq1d |
|
| 23 |
22
|
biimpa |
|
| 24 |
16 23
|
syldan |
|
| 25 |
24
|
an32s |
|
| 26 |
25
|
ex |
|
| 27 |
4 26
|
biimtrrid |
|
| 28 |
27
|
orrd |
|
| 29 |
28
|
ex |
|
| 30 |
9
|
0expd |
|
| 31 |
|
oveq1 |
|
| 32 |
|
id |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
30 33
|
syl5ibrcom |
|
| 35 |
|
1exp |
|
| 36 |
10 35
|
syl |
|
| 37 |
|
oveq1 |
|
| 38 |
|
id |
|
| 39 |
37 38
|
eqeq12d |
|
| 40 |
36 39
|
syl5ibrcom |
|
| 41 |
34 40
|
jaod |
|
| 42 |
29 41
|
impbid |
|