| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 1 2 | breq12d |  | 
						
							| 4 | 3 | imbi2d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 5 6 | breq12d |  | 
						
							| 8 | 7 | imbi2d |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 9 10 | breq12d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 13 14 | breq12d |  | 
						
							| 16 | 15 | imbi2d |  | 
						
							| 17 |  | recn |  | 
						
							| 18 |  | recn |  | 
						
							| 19 |  | exp1 |  | 
						
							| 20 |  | exp1 |  | 
						
							| 21 | 19 20 | breqan12d |  | 
						
							| 22 | 17 18 21 | syl2an |  | 
						
							| 23 | 22 | biimpar |  | 
						
							| 24 | 23 | adantrl |  | 
						
							| 25 |  | simp2ll |  | 
						
							| 26 |  | nnnn0 |  | 
						
							| 27 | 26 | 3ad2ant1 |  | 
						
							| 28 | 25 27 | reexpcld |  | 
						
							| 29 |  | simp2lr |  | 
						
							| 30 | 29 27 | reexpcld |  | 
						
							| 31 | 28 30 | jca |  | 
						
							| 32 |  | simp2rl |  | 
						
							| 33 | 25 27 32 | expge0d |  | 
						
							| 34 |  | simp3 |  | 
						
							| 35 | 33 34 | jca |  | 
						
							| 36 |  | simp2l |  | 
						
							| 37 |  | simp2r |  | 
						
							| 38 |  | ltmul12a |  | 
						
							| 39 | 31 35 36 37 38 | syl22anc |  | 
						
							| 40 | 25 | recnd |  | 
						
							| 41 | 40 27 | expp1d |  | 
						
							| 42 | 29 | recnd |  | 
						
							| 43 | 42 27 | expp1d |  | 
						
							| 44 | 39 41 43 | 3brtr4d |  | 
						
							| 45 | 44 | 3exp |  | 
						
							| 46 | 45 | a2d |  | 
						
							| 47 | 4 8 12 16 24 46 | nnind |  | 
						
							| 48 | 47 | impcom |  | 
						
							| 49 | 48 | 3impa |  |