Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | exss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab | |
|
2 | 1 | neeq1i | |
3 | rabn0 | |
|
4 | n0 | |
|
5 | 2 3 4 | 3bitr3i | |
6 | vex | |
|
7 | 6 | snss | |
8 | ssab2 | |
|
9 | sstr2 | |
|
10 | 8 9 | mpi | |
11 | 7 10 | sylbi | |
12 | simpr | |
|
13 | equsb1v | |
|
14 | velsn | |
|
15 | 14 | sbbii | |
16 | 13 15 | mpbir | |
17 | 12 16 | jctil | |
18 | df-clab | |
|
19 | sban | |
|
20 | 18 19 | bitri | |
21 | df-rab | |
|
22 | 21 | eleq2i | |
23 | df-clab | |
|
24 | sban | |
|
25 | 22 23 24 | 3bitri | |
26 | 17 20 25 | 3imtr4i | |
27 | 26 | ne0d | |
28 | rabn0 | |
|
29 | 27 28 | sylib | |
30 | vsnex | |
|
31 | sseq1 | |
|
32 | rexeq | |
|
33 | 31 32 | anbi12d | |
34 | 30 33 | spcev | |
35 | 11 29 34 | syl2anc | |
36 | 35 | exlimiv | |
37 | 5 36 | sylbi | |