Metamath Proof Explorer


Theorem exss

Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003)

Ref Expression
Assertion exss xAφyyAxyφ

Proof

Step Hyp Ref Expression
1 df-rab xA|φ=x|xAφ
2 1 neeq1i xA|φx|xAφ
3 rabn0 xA|φxAφ
4 n0 x|xAφzzx|xAφ
5 2 3 4 3bitr3i xAφzzx|xAφ
6 vex zV
7 6 snss zx|xAφzx|xAφ
8 ssab2 x|xAφA
9 sstr2 zx|xAφx|xAφAzA
10 8 9 mpi zx|xAφzA
11 7 10 sylbi zx|xAφzA
12 simpr zxxAzxφzxφ
13 equsb1v zxx=z
14 velsn xzx=z
15 14 sbbii zxxzzxx=z
16 13 15 mpbir zxxz
17 12 16 jctil zxxAzxφzxxzzxφ
18 df-clab zx|xAφzxxAφ
19 sban zxxAφzxxAzxφ
20 18 19 bitri zx|xAφzxxAzxφ
21 df-rab xz|φ=x|xzφ
22 21 eleq2i zxz|φzx|xzφ
23 df-clab zx|xzφzxxzφ
24 sban zxxzφzxxzzxφ
25 22 23 24 3bitri zxz|φzxxzzxφ
26 17 20 25 3imtr4i zx|xAφzxz|φ
27 26 ne0d zx|xAφxz|φ
28 rabn0 xz|φxzφ
29 27 28 sylib zx|xAφxzφ
30 vsnex zV
31 sseq1 y=zyAzA
32 rexeq y=zxyφxzφ
33 31 32 anbi12d y=zyAxyφzAxzφ
34 30 33 spcev zAxzφyyAxyφ
35 11 29 34 syl2anc zx|xAφyyAxyφ
36 35 exlimiv zzx|xAφyyAxyφ
37 5 36 sylbi xAφyyAxyφ