Metamath Proof Explorer


Theorem extdgid

Description: A trivial field extension has degree one. (Contributed by Thierry Arnoux, 4-Aug-2023)

Ref Expression
Assertion extdgid EFieldE.:.E=1

Proof

Step Hyp Ref Expression
1 fldextid EFieldE/FldExtE
2 extdgval E/FldExtEE.:.E=dimsubringAlgEBaseE
3 1 2 syl EFieldE.:.E=dimsubringAlgEBaseE
4 isfld EFieldEDivRingECRing
5 4 simplbi EFieldEDivRing
6 rlmval ringLModE=subringAlgEBaseE
7 6 eqcomi subringAlgEBaseE=ringLModE
8 7 rlmdim EDivRingdimsubringAlgEBaseE=1
9 5 8 syl EFielddimsubringAlgEBaseE=1
10 3 9 eqtrd EFieldE.:.E=1