Metamath Proof Explorer


Theorem extwwlkfabel

Description: Characterization of an element of the set ( X C N ) , i.e., a double loop of length N on vertex X with a construction from the set F of closed walks on X with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). (Contributed by AV, 22-Feb-2022) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
Assertion extwwlkfabel GUSGraphXVN3WXCNWNClWWalksNGWprefixN2FWN1GNeighbVtxXWN2=X

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 1 2 3 extwwlkfab GUSGraphXVN3XCN=wNClWWalksNG|wprefixN2FwN1GNeighbVtxXwN2=X
5 4 eleq2d GUSGraphXVN3WXCNWwNClWWalksNG|wprefixN2FwN1GNeighbVtxXwN2=X
6 oveq1 w=WwprefixN2=WprefixN2
7 6 eleq1d w=WwprefixN2FWprefixN2F
8 fveq1 w=WwN1=WN1
9 8 eleq1d w=WwN1GNeighbVtxXWN1GNeighbVtxX
10 fveq1 w=WwN2=WN2
11 10 eqeq1d w=WwN2=XWN2=X
12 7 9 11 3anbi123d w=WwprefixN2FwN1GNeighbVtxXwN2=XWprefixN2FWN1GNeighbVtxXWN2=X
13 12 elrab WwNClWWalksNG|wprefixN2FwN1GNeighbVtxXwN2=XWNClWWalksNGWprefixN2FWN1GNeighbVtxXWN2=X
14 5 13 bitrdi GUSGraphXVN3WXCNWNClWWalksNGWprefixN2FWN1GNeighbVtxXWN2=X