Metamath Proof Explorer


Theorem f1un

Description: The union of two one-to-one functions with disjoint domains and codomains. (Contributed by BTernaryTau, 3-Dec-2024)

Ref Expression
Assertion f1un F:A1-1BG:C1-1DAC=BD=FG:AC1-1BD

Proof

Step Hyp Ref Expression
1 f1f F:A1-1BF:AB
2 1 frnd F:A1-1BranFB
3 f1f G:C1-1DG:CD
4 3 frnd G:C1-1DranGD
5 unss12 ranFBranGDranFranGBD
6 2 4 5 syl2an F:A1-1BG:C1-1DranFranGBD
7 f1f1orn F:A1-1BF:A1-1 ontoranF
8 f1f1orn G:C1-1DG:C1-1 ontoranG
9 7 8 anim12i F:A1-1BG:C1-1DF:A1-1 ontoranFG:C1-1 ontoranG
10 simprl F:A1-1BG:C1-1DAC=BD=AC=
11 ss2in ranFBranGDranFranGBD
12 2 4 11 syl2an F:A1-1BG:C1-1DranFranGBD
13 sseq0 ranFranGBDBD=ranFranG=
14 12 13 sylan F:A1-1BG:C1-1DBD=ranFranG=
15 14 adantrl F:A1-1BG:C1-1DAC=BD=ranFranG=
16 10 15 jca F:A1-1BG:C1-1DAC=BD=AC=ranFranG=
17 f1oun F:A1-1 ontoranFG:C1-1 ontoranGAC=ranFranG=FG:AC1-1 ontoranFranG
18 9 16 17 syl2an2r F:A1-1BG:C1-1DAC=BD=FG:AC1-1 ontoranFranG
19 f1of1 FG:AC1-1 ontoranFranGFG:AC1-1ranFranG
20 18 19 syl F:A1-1BG:C1-1DAC=BD=FG:AC1-1ranFranG
21 f1ss FG:AC1-1ranFranGranFranGBDFG:AC1-1BD
22 21 ancoms ranFranGBDFG:AC1-1ranFranGFG:AC1-1BD
23 6 20 22 syl2an2r F:A1-1BG:C1-1DAC=BD=FG:AC1-1BD