Metamath Proof Explorer


Theorem fac2xp3

Description: Factorial of 2x+3, sublemma for sublemma for AKS. (Contributed by metakunt, 19-Apr-2024)

Ref Expression
Assertion fac2xp3 x02x+3!=2x+1!2x+22x+3

Proof

Step Hyp Ref Expression
1 2cn 2
2 nn0cn x0x
3 mulcl 2x2x
4 1 2 3 sylancr x02x
5 ax-1cn 1
6 addass 2x212x+2+1=2x+2+1
7 1 5 6 mp3an23 2x2x+2+1=2x+2+1
8 4 7 syl x02x+2+1=2x+2+1
9 df-3 3=2+1
10 9 a1i x03=2+1
11 10 oveq2d x02x+3=2x+2+1
12 8 11 eqtr4d x02x+2+1=2x+3
13 12 fveq2d x02x+2+1!=2x+3!
14 2nn0 20
15 nn0mulcl 20x02x0
16 14 15 mpan x02x0
17 nn0addcl 2x0202x+20
18 14 17 mpan2 2x02x+20
19 16 18 syl x02x+20
20 facp1 2x+202x+2+1!=2x+2!2x+2+1
21 19 20 syl x02x+2+1!=2x+2!2x+2+1
22 13 21 eqtr3d x02x+3!=2x+2!2x+2+1
23 12 oveq2d x02x+2!2x+2+1=2x+2!2x+3
24 22 23 eqtrd x02x+3!=2x+2!2x+3
25 addass 2x112x+1+1=2x+1+1
26 5 5 25 mp3an23 2x2x+1+1=2x+1+1
27 4 26 syl x02x+1+1=2x+1+1
28 df-2 2=1+1
29 28 a1i x02=1+1
30 29 oveq2d x02x+2=2x+1+1
31 27 30 eqtr4d x02x+1+1=2x+2
32 31 fveq2d x02x+1+1!=2x+2!
33 peano2nn0 2x02x+10
34 16 33 syl x02x+10
35 facp1 2x+102x+1+1!=2x+1!2x+1+1
36 34 35 syl x02x+1+1!=2x+1!2x+1+1
37 32 36 eqtr3d x02x+2!=2x+1!2x+1+1
38 31 oveq2d x02x+1!2x+1+1=2x+1!2x+2
39 37 38 eqtrd x02x+2!=2x+1!2x+2
40 39 oveq1d x02x+2!2x+3=2x+1!2x+22x+3
41 40 eqeq2d x02x+3!=2x+2!2x+32x+3!=2x+1!2x+22x+3
42 24 41 mpbid x02x+3!=2x+1!2x+22x+3
43 faccl 2x+102x+1!
44 34 43 syl x02x+1!
45 nncn 2x+1!2x+1!
46 44 45 syl x02x+1!
47 addcl 2x22x+2
48 4 1 47 sylancl x02x+2
49 3cn 3
50 addcl 2x32x+3
51 4 49 50 sylancl x02x+3
52 mulass 2x+1!2x+22x+32x+1!2x+22x+3=2x+1!2x+22x+3
53 46 48 51 52 syl3anc x02x+1!2x+22x+3=2x+1!2x+22x+3
54 42 53 eqtrd x02x+3!=2x+1!2x+22x+3