Metamath Proof Explorer


Theorem fclsneii

Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclsneii AJfClusFNneiJASFNS

Proof

Step Hyp Ref Expression
1 simp1 AJfClusFNneiJASFAJfClusF
2 fclstop AJfClusFJTop
3 1 2 syl AJfClusFNneiJASFJTop
4 simp2 AJfClusFNneiJASFNneiJA
5 eqid J=J
6 5 neii1 JTopNneiJANJ
7 3 4 6 syl2anc AJfClusFNneiJASFNJ
8 5 ntrss2 JTopNJintJNN
9 3 7 8 syl2anc AJfClusFNneiJASFintJNN
10 9 ssrind AJfClusFNneiJASFintJNSNS
11 5 ntropn JTopNJintJNJ
12 3 7 11 syl2anc AJfClusFNneiJASFintJNJ
13 5 fclselbas AJfClusFAJ
14 1 13 syl AJfClusFNneiJASFAJ
15 14 snssd AJfClusFNneiJASFAJ
16 5 neiint JTopAJNJNneiJAAintJN
17 3 15 7 16 syl3anc AJfClusFNneiJASFNneiJAAintJN
18 4 17 mpbid AJfClusFNneiJASFAintJN
19 snssg AJAintJNAintJN
20 14 19 syl AJfClusFNneiJASFAintJNAintJN
21 18 20 mpbird AJfClusFNneiJASFAintJN
22 simp3 AJfClusFNneiJASFSF
23 fclsopni AJfClusFintJNJAintJNSFintJNS
24 1 12 21 22 23 syl13anc AJfClusFNneiJASFintJNS
25 ssn0 intJNSNSintJNSNS
26 10 24 25 syl2anc AJfClusFNneiJASFNS