Metamath Proof Explorer


Theorem fcof1

Description: An application is injective if a retraction exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 11-Nov-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion fcof1 F:ABRF=IAF:A1-1B

Proof

Step Hyp Ref Expression
1 simpl F:ABRF=IAF:AB
2 simprr F:ABRF=IAxAyAFx=FyFx=Fy
3 2 fveq2d F:ABRF=IAxAyAFx=FyRFx=RFy
4 simpll F:ABRF=IAxAyAFx=FyF:AB
5 simprll F:ABRF=IAxAyAFx=FyxA
6 fvco3 F:ABxARFx=RFx
7 4 5 6 syl2anc F:ABRF=IAxAyAFx=FyRFx=RFx
8 simprlr F:ABRF=IAxAyAFx=FyyA
9 fvco3 F:AByARFy=RFy
10 4 8 9 syl2anc F:ABRF=IAxAyAFx=FyRFy=RFy
11 3 7 10 3eqtr4d F:ABRF=IAxAyAFx=FyRFx=RFy
12 simplr F:ABRF=IAxAyAFx=FyRF=IA
13 12 fveq1d F:ABRF=IAxAyAFx=FyRFx=IAx
14 12 fveq1d F:ABRF=IAxAyAFx=FyRFy=IAy
15 11 13 14 3eqtr3d F:ABRF=IAxAyAFx=FyIAx=IAy
16 fvresi xAIAx=x
17 5 16 syl F:ABRF=IAxAyAFx=FyIAx=x
18 fvresi yAIAy=y
19 8 18 syl F:ABRF=IAxAyAFx=FyIAy=y
20 15 17 19 3eqtr3d F:ABRF=IAxAyAFx=Fyx=y
21 20 expr F:ABRF=IAxAyAFx=Fyx=y
22 21 ralrimivva F:ABRF=IAxAyAFx=Fyx=y
23 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
24 1 22 23 sylanbrc F:ABRF=IAF:A1-1B