Metamath Proof Explorer


Theorem fcof1

Description: An application is injective if a retraction exists. Proposition 8 of BourbakiEns p. E.II.18. (Contributed by FL, 11-Nov-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion fcof1 F : A B R F = I A F : A 1-1 B

Proof

Step Hyp Ref Expression
1 simpl F : A B R F = I A F : A B
2 simprr F : A B R F = I A x A y A F x = F y F x = F y
3 2 fveq2d F : A B R F = I A x A y A F x = F y R F x = R F y
4 simpll F : A B R F = I A x A y A F x = F y F : A B
5 simprll F : A B R F = I A x A y A F x = F y x A
6 fvco3 F : A B x A R F x = R F x
7 4 5 6 syl2anc F : A B R F = I A x A y A F x = F y R F x = R F x
8 simprlr F : A B R F = I A x A y A F x = F y y A
9 fvco3 F : A B y A R F y = R F y
10 4 8 9 syl2anc F : A B R F = I A x A y A F x = F y R F y = R F y
11 3 7 10 3eqtr4d F : A B R F = I A x A y A F x = F y R F x = R F y
12 simplr F : A B R F = I A x A y A F x = F y R F = I A
13 12 fveq1d F : A B R F = I A x A y A F x = F y R F x = I A x
14 12 fveq1d F : A B R F = I A x A y A F x = F y R F y = I A y
15 11 13 14 3eqtr3d F : A B R F = I A x A y A F x = F y I A x = I A y
16 fvresi x A I A x = x
17 5 16 syl F : A B R F = I A x A y A F x = F y I A x = x
18 fvresi y A I A y = y
19 8 18 syl F : A B R F = I A x A y A F x = F y I A y = y
20 15 17 19 3eqtr3d F : A B R F = I A x A y A F x = F y x = y
21 20 expr F : A B R F = I A x A y A F x = F y x = y
22 21 ralrimivva F : A B R F = I A x A y A F x = F y x = y
23 dff13 F : A 1-1 B F : A B x A y A F x = F y x = y
24 1 22 23 sylanbrc F : A B R F = I A F : A 1-1 B