Metamath Proof Explorer


Theorem fcoresfo

Description: If a composition is surjective, then the restriction of its first component to the minimum domain is surjective. (Contributed by AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φF:AB
fcores.e E=ranFC
fcores.p P=F-1C
fcores.x X=FP
fcores.g φG:CD
fcores.y Y=GE
fcoresfo.s φGF:PontoD
Assertion fcoresfo φY:EontoD

Proof

Step Hyp Ref Expression
1 fcores.f φF:AB
2 fcores.e E=ranFC
3 fcores.p P=F-1C
4 fcores.x X=FP
5 fcores.g φG:CD
6 fcores.y Y=GE
7 fcoresfo.s φGF:PontoD
8 2 a1i φE=ranFC
9 inss2 ranFCC
10 8 9 eqsstrdi φEC
11 5 10 fssresd φGE:ED
12 6 feq1i Y:EDGE:ED
13 11 12 sylibr φY:ED
14 1 2 3 4 fcoreslem3 φX:PontoE
15 fof X:PontoEX:PE
16 14 15 syl φX:PE
17 1 2 3 4 5 6 fcores φGF=YX
18 17 eqcomd φYX=GF
19 foeq1 YX=GFYX:PontoDGF:PontoD
20 18 19 syl φYX:PontoDGF:PontoD
21 7 20 mpbird φYX:PontoD
22 foco2 Y:EDX:PEYX:PontoDY:EontoD
23 13 16 21 22 syl3anc φY:EontoD