Metamath Proof Explorer


Theorem ficardun

Description: The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009) (Proof shortened by Mario Carneiro, 28-Apr-2015) Avoid ax-rep . (Revised by BTernaryTau, 3-Jul-2024)

Ref Expression
Assertion ficardun AFinBFinAB=cardAB=cardA+𝑜cardB

Proof

Step Hyp Ref Expression
1 ficardadju AFinBFinA⊔︀BcardA+𝑜cardB
2 1 3adant3 AFinBFinAB=A⊔︀BcardA+𝑜cardB
3 2 ensymd AFinBFinAB=cardA+𝑜cardBA⊔︀B
4 endjudisj AFinBFinAB=A⊔︀BAB
5 entr cardA+𝑜cardBA⊔︀BA⊔︀BABcardA+𝑜cardBAB
6 3 4 5 syl2anc AFinBFinAB=cardA+𝑜cardBAB
7 carden2b cardA+𝑜cardBABcardcardA+𝑜cardB=cardAB
8 6 7 syl AFinBFinAB=cardcardA+𝑜cardB=cardAB
9 ficardom AFincardAω
10 ficardom BFincardBω
11 nnacl cardAωcardBωcardA+𝑜cardBω
12 cardnn cardA+𝑜cardBωcardcardA+𝑜cardB=cardA+𝑜cardB
13 11 12 syl cardAωcardBωcardcardA+𝑜cardB=cardA+𝑜cardB
14 9 10 13 syl2an AFinBFincardcardA+𝑜cardB=cardA+𝑜cardB
15 14 3adant3 AFinBFinAB=cardcardA+𝑜cardB=cardA+𝑜cardB
16 8 15 eqtr3d AFinBFinAB=cardAB=cardA+𝑜cardB