Metamath Proof Explorer


Theorem fiin

Description: The elements of ( fiC ) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fiin AfiCBfiCABfiC

Proof

Step Hyp Ref Expression
1 elfvex AfiCCV
2 elfi AfiCCVAfiCx𝒫CFinA=x
3 1 2 mpdan AfiCAfiCx𝒫CFinA=x
4 3 ibi AfiCx𝒫CFinA=x
5 4 adantr AfiCBfiCx𝒫CFinA=x
6 simpr AfiCBfiCBfiC
7 elfi BfiCCVBfiCy𝒫CFinB=y
8 7 ancoms CVBfiCBfiCy𝒫CFinB=y
9 1 8 sylan AfiCBfiCBfiCy𝒫CFinB=y
10 6 9 mpbid AfiCBfiCy𝒫CFinB=y
11 elin x𝒫CFinx𝒫CxFin
12 elin y𝒫CFiny𝒫CyFin
13 pwuncl x𝒫Cy𝒫Cxy𝒫C
14 unfi xFinyFinxyFin
15 13 14 anim12i x𝒫Cy𝒫CxFinyFinxy𝒫CxyFin
16 15 an4s x𝒫CxFiny𝒫CyFinxy𝒫CxyFin
17 11 12 16 syl2anb x𝒫CFiny𝒫CFinxy𝒫CxyFin
18 elin xy𝒫CFinxy𝒫CxyFin
19 17 18 sylibr x𝒫CFiny𝒫CFinxy𝒫CFin
20 ineq12 A=xB=yAB=xy
21 intun xy=xy
22 20 21 eqtr4di A=xB=yAB=xy
23 inteq z=xyz=xy
24 23 rspceeqv xy𝒫CFinAB=xyz𝒫CFinAB=z
25 19 22 24 syl2an x𝒫CFiny𝒫CFinA=xB=yz𝒫CFinAB=z
26 25 an4s x𝒫CFinA=xy𝒫CFinB=yz𝒫CFinAB=z
27 26 rexlimdvaa x𝒫CFinA=xy𝒫CFinB=yz𝒫CFinAB=z
28 27 rexlimiva x𝒫CFinA=xy𝒫CFinB=yz𝒫CFinAB=z
29 5 10 28 sylc AfiCBfiCz𝒫CFinAB=z
30 inex1g AfiCABV
31 elfi ABVCVABfiCz𝒫CFinAB=z
32 30 1 31 syl2anc AfiCABfiCz𝒫CFinAB=z
33 32 adantr AfiCBfiCABfiCz𝒫CFinAB=z
34 29 33 mpbird AfiCBfiCABfiC