Metamath Proof Explorer


Theorem fin23lem25

Description: Lemma for fin23 . In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem25 AFinBFinABBAABA=B

Proof

Step Hyp Ref Expression
1 dfpss2 ABAB¬A=B
2 php3 BFinABAB
3 sdomnen AB¬AB
4 2 3 syl BFinAB¬AB
5 4 ex BFinAB¬AB
6 1 5 biimtrrid BFinAB¬A=B¬AB
7 6 adantl AFinBFinAB¬A=B¬AB
8 7 expd AFinBFinAB¬A=B¬AB
9 dfpss2 BABA¬B=A
10 eqcom B=AA=B
11 10 notbii ¬B=A¬A=B
12 11 anbi2i BA¬B=ABA¬A=B
13 9 12 bitri BABA¬A=B
14 php3 AFinBABA
15 sdomnen BA¬BA
16 ensym ABBA
17 15 16 nsyl BA¬AB
18 14 17 syl AFinBA¬AB
19 18 ex AFinBA¬AB
20 13 19 biimtrrid AFinBA¬A=B¬AB
21 20 adantr AFinBFinBA¬A=B¬AB
22 21 expd AFinBFinBA¬A=B¬AB
23 8 22 jaod AFinBFinABBA¬A=B¬AB
24 23 3impia AFinBFinABBA¬A=B¬AB
25 24 con4d AFinBFinABBAABA=B
26 eqeng AFinA=BAB
27 26 3ad2ant1 AFinBFinABBAA=BAB
28 25 27 impbid AFinBFinABBAABA=B