Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin23lem26
Next ⟩
fin23lem23
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin23lem26
Description:
Lemma for
fin23lem22
.
(Contributed by
Stefan O'Rear
, 1-Nov-2014)
Ref
Expression
Assertion
fin23lem26
ω
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
i
∈
ω
→
∃
j
∈
S
j
∩
S
≈
i
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
i
=
∅
→
j
∩
S
≈
i
↔
j
∩
S
≈
∅
2
1
rexbidv
⊢
i
=
∅
→
∃
j
∈
S
j
∩
S
≈
i
↔
∃
j
∈
S
j
∩
S
≈
∅
3
breq2
⊢
i
=
a
→
j
∩
S
≈
i
↔
j
∩
S
≈
a
4
3
rexbidv
⊢
i
=
a
→
∃
j
∈
S
j
∩
S
≈
i
↔
∃
j
∈
S
j
∩
S
≈
a
5
breq2
⊢
i
=
suc
a
→
j
∩
S
≈
i
↔
j
∩
S
≈
suc
a
6
5
rexbidv
⊢
i
=
suc
a
→
∃
j
∈
S
j
∩
S
≈
i
↔
∃
j
∈
S
j
∩
S
≈
suc
a
7
ordom
ω
⊢
Ord
ω
8
simpl
ω
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
→
S
⊆
ω
9
0fin
⊢
∅
∈
Fin
10
eleq1
⊢
S
=
∅
→
S
∈
Fin
↔
∅
∈
Fin
11
9
10
mpbiri
⊢
S
=
∅
→
S
∈
Fin
12
11
necon3bi
⊢
¬
S
∈
Fin
→
S
≠
∅
13
12
adantl
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
→
S
≠
∅
14
tz7.5
ω
ω
⊢
Ord
ω
∧
S
⊆
ω
∧
S
≠
∅
→
∃
j
∈
S
S
∩
j
=
∅
15
7
8
13
14
mp3an2i
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
→
∃
j
∈
S
S
∩
j
=
∅
16
en0
⊢
j
∩
S
≈
∅
↔
j
∩
S
=
∅
17
incom
⊢
j
∩
S
=
S
∩
j
18
17
eqeq1i
⊢
j
∩
S
=
∅
↔
S
∩
j
=
∅
19
16
18
bitri
⊢
j
∩
S
≈
∅
↔
S
∩
j
=
∅
20
19
rexbii
⊢
∃
j
∈
S
j
∩
S
≈
∅
↔
∃
j
∈
S
S
∩
j
=
∅
21
15
20
sylibr
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
→
∃
j
∈
S
j
∩
S
≈
∅
22
simplrl
ω
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
S
⊆
ω
23
omsson
ω
⊢
ω
⊆
On
24
22
23
sstrdi
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
S
⊆
On
25
24
ssdifssd
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
S
∖
suc
j
⊆
On
26
simplr
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
→
¬
S
∈
Fin
27
ssel2
ω
ω
⊢
S
⊆
ω
∧
j
∈
S
→
j
∈
ω
28
onfin2
ω
⊢
ω
=
On
∩
Fin
29
inss2
⊢
On
∩
Fin
⊆
Fin
30
28
29
eqsstri
ω
⊢
ω
⊆
Fin
31
peano2
ω
ω
⊢
j
∈
ω
→
suc
j
∈
ω
32
30
31
sselid
ω
⊢
j
∈
ω
→
suc
j
∈
Fin
33
27
32
syl
ω
⊢
S
⊆
ω
∧
j
∈
S
→
suc
j
∈
Fin
34
33
adantlr
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
→
suc
j
∈
Fin
35
ssfi
⊢
suc
j
∈
Fin
∧
S
⊆
suc
j
→
S
∈
Fin
36
35
ex
⊢
suc
j
∈
Fin
→
S
⊆
suc
j
→
S
∈
Fin
37
34
36
syl
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
→
S
⊆
suc
j
→
S
∈
Fin
38
26
37
mtod
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
→
¬
S
⊆
suc
j
39
ssdif0
⊢
S
⊆
suc
j
↔
S
∖
suc
j
=
∅
40
39
necon3bbii
⊢
¬
S
⊆
suc
j
↔
S
∖
suc
j
≠
∅
41
38
40
sylib
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
→
S
∖
suc
j
≠
∅
42
41
ad2ant2lr
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
S
∖
suc
j
≠
∅
43
onint
⊢
S
∖
suc
j
⊆
On
∧
S
∖
suc
j
≠
∅
→
⋂
S
∖
suc
j
∈
S
∖
suc
j
44
25
42
43
syl2anc
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
⋂
S
∖
suc
j
∈
S
∖
suc
j
45
44
eldifad
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
⋂
S
∖
suc
j
∈
S
46
simprr
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
∩
S
≈
a
47
en2sn
⊢
j
∈
V
∧
a
∈
V
→
j
≈
a
48
47
el2v
⊢
j
≈
a
49
48
a1i
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
≈
a
50
simprl
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
∈
S
51
22
50
sseldd
ω
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
∈
ω
52
nnord
ω
⊢
j
∈
ω
→
Ord
j
53
51
52
syl
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
Ord
j
54
ordirr
⊢
Ord
j
→
¬
j
∈
j
55
elinel1
⊢
j
∈
j
∩
S
→
j
∈
j
56
54
55
nsyl
⊢
Ord
j
→
¬
j
∈
j
∩
S
57
disjsn
⊢
j
∩
S
∩
j
=
∅
↔
¬
j
∈
j
∩
S
58
56
57
sylibr
⊢
Ord
j
→
j
∩
S
∩
j
=
∅
59
53
58
syl
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
∩
S
∩
j
=
∅
60
nnord
ω
⊢
a
∈
ω
→
Ord
a
61
ordirr
⊢
Ord
a
→
¬
a
∈
a
62
60
61
syl
ω
⊢
a
∈
ω
→
¬
a
∈
a
63
disjsn
⊢
a
∩
a
=
∅
↔
¬
a
∈
a
64
62
63
sylibr
ω
⊢
a
∈
ω
→
a
∩
a
=
∅
65
64
ad2antrr
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
a
∩
a
=
∅
66
unen
⊢
j
∩
S
≈
a
∧
j
≈
a
∧
j
∩
S
∩
j
=
∅
∧
a
∩
a
=
∅
→
j
∩
S
∪
j
≈
a
∪
a
67
46
49
59
65
66
syl22anc
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
∩
S
∪
j
≈
a
∪
a
68
simprr
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
∧
b
∈
S
→
b
∈
S
69
simplrl
ω
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
∧
b
∈
S
→
S
⊆
ω
70
69
23
sstrdi
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
∧
b
∈
S
→
S
⊆
On
71
ordsuc
⊢
Ord
j
↔
Ord
suc
j
72
53
71
sylib
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
Ord
suc
j
73
72
adantrr
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
∧
b
∈
S
→
Ord
suc
j
74
simp2
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
S
⊆
On
75
74
ssdifssd
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
S
∖
suc
j
⊆
On
76
simpl1
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
¬
b
∈
suc
j
→
b
∈
S
77
simpr
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
¬
b
∈
suc
j
→
¬
b
∈
suc
j
78
76
77
eldifd
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
¬
b
∈
suc
j
→
b
∈
S
∖
suc
j
79
78
ex
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
¬
b
∈
suc
j
→
b
∈
S
∖
suc
j
80
onnmin
⊢
S
∖
suc
j
⊆
On
∧
b
∈
S
∖
suc
j
→
¬
b
∈
⋂
S
∖
suc
j
81
75
79
80
syl6an
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
¬
b
∈
suc
j
→
¬
b
∈
⋂
S
∖
suc
j
82
81
con4d
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
b
∈
⋂
S
∖
suc
j
→
b
∈
suc
j
83
82
imp
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
⋂
S
∖
suc
j
→
b
∈
suc
j
84
simp3
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
Ord
suc
j
85
ordsucss
⊢
Ord
suc
j
→
b
∈
suc
j
→
suc
b
⊆
suc
j
86
84
85
syl
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
b
∈
suc
j
→
suc
b
⊆
suc
j
87
86
imp
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
suc
b
⊆
suc
j
88
87
sscond
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
S
∖
suc
j
⊆
S
∖
suc
b
89
intss
⊢
S
∖
suc
j
⊆
S
∖
suc
b
→
⋂
S
∖
suc
b
⊆
⋂
S
∖
suc
j
90
88
89
syl
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
⋂
S
∖
suc
b
⊆
⋂
S
∖
suc
j
91
simpl2
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
S
⊆
On
92
ordelon
⊢
Ord
suc
j
∧
b
∈
suc
j
→
b
∈
On
93
84
92
sylan
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
b
∈
On
94
onmindif
⊢
S
⊆
On
∧
b
∈
On
→
b
∈
⋂
S
∖
suc
b
95
91
93
94
syl2anc
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
b
∈
⋂
S
∖
suc
b
96
90
95
sseldd
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
∧
b
∈
suc
j
→
b
∈
⋂
S
∖
suc
j
97
83
96
impbida
⊢
b
∈
S
∧
S
⊆
On
∧
Ord
suc
j
→
b
∈
⋂
S
∖
suc
j
↔
b
∈
suc
j
98
68
70
73
97
syl3anc
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
∧
b
∈
S
→
b
∈
⋂
S
∖
suc
j
↔
b
∈
suc
j
99
df-suc
⊢
suc
j
=
j
∪
j
100
99
eleq2i
⊢
b
∈
suc
j
↔
b
∈
j
∪
j
101
98
100
bitrdi
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
∧
b
∈
S
→
b
∈
⋂
S
∖
suc
j
↔
b
∈
j
∪
j
102
101
expr
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
b
∈
S
→
b
∈
⋂
S
∖
suc
j
↔
b
∈
j
∪
j
103
102
pm5.32rd
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
b
∈
⋂
S
∖
suc
j
∧
b
∈
S
↔
b
∈
j
∪
j
∧
b
∈
S
104
elin
⊢
b
∈
⋂
S
∖
suc
j
∩
S
↔
b
∈
⋂
S
∖
suc
j
∧
b
∈
S
105
elin
⊢
b
∈
j
∪
j
∩
S
↔
b
∈
j
∪
j
∧
b
∈
S
106
103
104
105
3bitr4g
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
b
∈
⋂
S
∖
suc
j
∩
S
↔
b
∈
j
∪
j
∩
S
107
106
eqrdv
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
⋂
S
∖
suc
j
∩
S
=
j
∪
j
∩
S
108
indir
⊢
j
∪
j
∩
S
=
j
∩
S
∪
j
∩
S
109
107
108
eqtrdi
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
⋂
S
∖
suc
j
∩
S
=
j
∩
S
∪
j
∩
S
110
snssi
⊢
j
∈
S
→
j
⊆
S
111
df-ss
⊢
j
⊆
S
↔
j
∩
S
=
j
112
110
111
sylib
⊢
j
∈
S
→
j
∩
S
=
j
113
112
uneq2d
⊢
j
∈
S
→
j
∩
S
∪
j
∩
S
=
j
∩
S
∪
j
114
113
ad2antrl
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
j
∩
S
∪
j
∩
S
=
j
∩
S
∪
j
115
109
114
eqtrd
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
⋂
S
∖
suc
j
∩
S
=
j
∩
S
∪
j
116
df-suc
⊢
suc
a
=
a
∪
a
117
116
a1i
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
suc
a
=
a
∪
a
118
67
115
117
3brtr4d
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
⋂
S
∖
suc
j
∩
S
≈
suc
a
119
ineq1
⊢
b
=
⋂
S
∖
suc
j
→
b
∩
S
=
⋂
S
∖
suc
j
∩
S
120
119
breq1d
⊢
b
=
⋂
S
∖
suc
j
→
b
∩
S
≈
suc
a
↔
⋂
S
∖
suc
j
∩
S
≈
suc
a
121
120
rspcev
⊢
⋂
S
∖
suc
j
∈
S
∧
⋂
S
∖
suc
j
∩
S
≈
suc
a
→
∃
b
∈
S
b
∩
S
≈
suc
a
122
45
118
121
syl2anc
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
∧
j
∈
S
∧
j
∩
S
≈
a
→
∃
b
∈
S
b
∩
S
≈
suc
a
123
122
rexlimdvaa
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
→
∃
j
∈
S
j
∩
S
≈
a
→
∃
b
∈
S
b
∩
S
≈
suc
a
124
ineq1
⊢
b
=
j
→
b
∩
S
=
j
∩
S
125
124
breq1d
⊢
b
=
j
→
b
∩
S
≈
suc
a
↔
j
∩
S
≈
suc
a
126
125
cbvrexvw
⊢
∃
b
∈
S
b
∩
S
≈
suc
a
↔
∃
j
∈
S
j
∩
S
≈
suc
a
127
123
126
imbitrdi
ω
ω
⊢
a
∈
ω
∧
S
⊆
ω
∧
¬
S
∈
Fin
→
∃
j
∈
S
j
∩
S
≈
a
→
∃
j
∈
S
j
∩
S
≈
suc
a
128
127
ex
ω
ω
⊢
a
∈
ω
→
S
⊆
ω
∧
¬
S
∈
Fin
→
∃
j
∈
S
j
∩
S
≈
a
→
∃
j
∈
S
j
∩
S
≈
suc
a
129
2
4
6
21
128
finds2
ω
ω
⊢
i
∈
ω
→
S
⊆
ω
∧
¬
S
∈
Fin
→
∃
j
∈
S
j
∩
S
≈
i
130
129
impcom
ω
ω
⊢
S
⊆
ω
∧
¬
S
∈
Fin
∧
i
∈
ω
→
∃
j
∈
S
j
∩
S
≈
i