Description: Lemma for fin23 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 ) between an infinite subset of _om and _om itself. (Contributed by Stefan O'Rear, 1-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fin23lem22.b | |
|
Assertion | fin23lem22 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem22.b | |
|
2 | fin23lem23 | |
|
3 | riotacl | |
|
4 | 2 3 | syl | |
5 | simpll | |
|
6 | simpr | |
|
7 | 5 6 | sseldd | |
8 | nnfi | |
|
9 | infi | |
|
10 | ficardom | |
|
11 | 7 8 9 10 | 4syl | |
12 | cardnn | |
|
13 | 12 | eqcomd | |
14 | 13 | eqeq1d | |
15 | eqcom | |
|
16 | 14 15 | bitrdi | |
17 | 16 | ad2antrl | |
18 | simpll | |
|
19 | simprr | |
|
20 | 18 19 | sseldd | |
21 | nnon | |
|
22 | onenon | |
|
23 | 20 21 22 | 3syl | |
24 | inss1 | |
|
25 | ssnum | |
|
26 | 23 24 25 | sylancl | |
27 | nnon | |
|
28 | 27 | ad2antrl | |
29 | onenon | |
|
30 | 28 29 | syl | |
31 | carden2 | |
|
32 | 26 30 31 | syl2anc | |
33 | 2 | adantrr | |
34 | ineq1 | |
|
35 | 34 | breq1d | |
36 | 35 | riota2 | |
37 | 19 33 36 | syl2anc | |
38 | eqcom | |
|
39 | 37 38 | bitrdi | |
40 | 17 32 39 | 3bitrd | |
41 | 1 4 11 40 | f1o2d | |