Metamath Proof Explorer


Theorem fin23lem22

Description: Lemma for fin23 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 ) between an infinite subset of _om and _om itself. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem22.b C=iωιjS|jSi
Assertion fin23lem22 Sω¬SFinC:ω1-1 ontoS

Proof

Step Hyp Ref Expression
1 fin23lem22.b C=iωιjS|jSi
2 fin23lem23 Sω¬SFiniω∃!jSjSi
3 riotacl ∃!jSjSiιjS|jSiS
4 2 3 syl Sω¬SFiniωιjS|jSiS
5 simpll Sω¬SFinaSSω
6 simpr Sω¬SFinaSaS
7 5 6 sseldd Sω¬SFinaSaω
8 nnfi aωaFin
9 infi aFinaSFin
10 ficardom aSFincardaSω
11 7 8 9 10 4syl Sω¬SFinaScardaSω
12 cardnn iωcardi=i
13 12 eqcomd iωi=cardi
14 13 eqeq1d iωi=cardaScardi=cardaS
15 eqcom cardi=cardaScardaS=cardi
16 14 15 bitrdi iωi=cardaScardaS=cardi
17 16 ad2antrl Sω¬SFiniωaSi=cardaScardaS=cardi
18 simpll Sω¬SFiniωaSSω
19 simprr Sω¬SFiniωaSaS
20 18 19 sseldd Sω¬SFiniωaSaω
21 nnon aωaOn
22 onenon aOnadomcard
23 20 21 22 3syl Sω¬SFiniωaSadomcard
24 inss1 aSa
25 ssnum adomcardaSaaSdomcard
26 23 24 25 sylancl Sω¬SFiniωaSaSdomcard
27 nnon iωiOn
28 27 ad2antrl Sω¬SFiniωaSiOn
29 onenon iOnidomcard
30 28 29 syl Sω¬SFiniωaSidomcard
31 carden2 aSdomcardidomcardcardaS=cardiaSi
32 26 30 31 syl2anc Sω¬SFiniωaScardaS=cardiaSi
33 2 adantrr Sω¬SFiniωaS∃!jSjSi
34 ineq1 j=ajS=aS
35 34 breq1d j=ajSiaSi
36 35 riota2 aS∃!jSjSiaSiιjS|jSi=a
37 19 33 36 syl2anc Sω¬SFiniωaSaSiιjS|jSi=a
38 eqcom ιjS|jSi=aa=ιjS|jSi
39 37 38 bitrdi Sω¬SFiniωaSaSia=ιjS|jSi
40 17 32 39 3bitrd Sω¬SFiniωaSi=cardaSa=ιjS|jSi
41 1 4 11 40 f1o2d Sω¬SFinC:ω1-1 ontoS