Metamath Proof Explorer


Theorem fin23lem35

Description: Lemma for fin23 . Strict order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
fin23lem.f φ h : ω 1-1 V
fin23lem.g φ ran h G
fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
fin23lem.i Y = rec i h ω
Assertion fin23lem35 φ A ω ran Y suc A ran Y A

Proof

Step Hyp Ref Expression
1 fin23lem33.f F = g | a 𝒫 g ω x ω a suc x a x ran a ran a
2 fin23lem.f φ h : ω 1-1 V
3 fin23lem.g φ ran h G
4 fin23lem.h φ j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j
5 fin23lem.i Y = rec i h ω
6 1 2 3 4 5 fin23lem34 φ A ω Y A : ω 1-1 V ran Y A G
7 fvex Y A V
8 f1eq1 j = Y A j : ω 1-1 V Y A : ω 1-1 V
9 rneq j = Y A ran j = ran Y A
10 9 unieqd j = Y A ran j = ran Y A
11 10 sseq1d j = Y A ran j G ran Y A G
12 8 11 anbi12d j = Y A j : ω 1-1 V ran j G Y A : ω 1-1 V ran Y A G
13 fveq2 j = Y A i j = i Y A
14 f1eq1 i j = i Y A i j : ω 1-1 V i Y A : ω 1-1 V
15 13 14 syl j = Y A i j : ω 1-1 V i Y A : ω 1-1 V
16 13 rneqd j = Y A ran i j = ran i Y A
17 16 unieqd j = Y A ran i j = ran i Y A
18 17 10 psseq12d j = Y A ran i j ran j ran i Y A ran Y A
19 15 18 anbi12d j = Y A i j : ω 1-1 V ran i j ran j i Y A : ω 1-1 V ran i Y A ran Y A
20 12 19 imbi12d j = Y A j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j Y A : ω 1-1 V ran Y A G i Y A : ω 1-1 V ran i Y A ran Y A
21 7 20 spcv j j : ω 1-1 V ran j G i j : ω 1-1 V ran i j ran j Y A : ω 1-1 V ran Y A G i Y A : ω 1-1 V ran i Y A ran Y A
22 4 21 syl φ Y A : ω 1-1 V ran Y A G i Y A : ω 1-1 V ran i Y A ran Y A
23 22 adantr φ A ω Y A : ω 1-1 V ran Y A G i Y A : ω 1-1 V ran i Y A ran Y A
24 6 23 mpd φ A ω i Y A : ω 1-1 V ran i Y A ran Y A
25 24 simprd φ A ω ran i Y A ran Y A
26 frsuc A ω rec i h ω suc A = i rec i h ω A
27 26 adantl φ A ω rec i h ω suc A = i rec i h ω A
28 5 fveq1i Y suc A = rec i h ω suc A
29 5 fveq1i Y A = rec i h ω A
30 29 fveq2i i Y A = i rec i h ω A
31 27 28 30 3eqtr4g φ A ω Y suc A = i Y A
32 31 rneqd φ A ω ran Y suc A = ran i Y A
33 32 unieqd φ A ω ran Y suc A = ran i Y A
34 33 psseq1d φ A ω ran Y suc A ran Y A ran i Y A ran Y A
35 25 34 mpbird φ A ω ran Y suc A ran Y A