Metamath Proof Explorer


Theorem fincmp

Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008)

Ref Expression
Assertion fincmp JTopFinJComp

Proof

Step Hyp Ref Expression
1 elinel1 JTopFinJTop
2 elinel2 JTopFinJFin
3 vex yV
4 3 pwid y𝒫y
5 velpw y𝒫JyJ
6 ssfi JFinyJyFin
7 5 6 sylan2b JFiny𝒫JyFin
8 elin y𝒫yFiny𝒫yyFin
9 unieq z=yz=y
10 9 rspceeqv y𝒫yFinJ=yz𝒫yFinJ=z
11 10 ex y𝒫yFinJ=yz𝒫yFinJ=z
12 8 11 sylbir y𝒫yyFinJ=yz𝒫yFinJ=z
13 4 7 12 sylancr JFiny𝒫JJ=yz𝒫yFinJ=z
14 13 ralrimiva JFiny𝒫JJ=yz𝒫yFinJ=z
15 2 14 syl JTopFiny𝒫JJ=yz𝒫yFinJ=z
16 eqid J=J
17 16 iscmp JCompJTopy𝒫JJ=yz𝒫yFinJ=z
18 1 15 17 sylanbrc JTopFinJComp