Metamath Proof Explorer


Theorem findsg

Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number B instead of zero. (Contributed by NM, 16-Sep-1995)

Ref Expression
Hypotheses findsg.1 x=Bφψ
findsg.2 x=yφχ
findsg.3 x=sucyφθ
findsg.4 x=Aφτ
findsg.5 Bωψ
findsg.6 yωBωByχθ
Assertion findsg AωBωBAτ

Proof

Step Hyp Ref Expression
1 findsg.1 x=Bφψ
2 findsg.2 x=yφχ
3 findsg.3 x=sucyφθ
4 findsg.4 x=Aφτ
5 findsg.5 Bωψ
6 findsg.6 yωBωByχθ
7 sseq2 x=BxB
8 7 adantl B=x=BxB
9 eqeq2 B=x=Bx=
10 9 1 syl6bir B=x=φψ
11 10 imp B=x=φψ
12 8 11 imbi12d B=x=BxφBψ
13 7 imbi1d x=BxφBφ
14 ss0 BB=
15 14 con3i ¬B=¬B
16 15 pm2.21d ¬B=Bφψ
17 16 pm5.74d ¬B=BφBψ
18 13 17 sylan9bbr ¬B=x=BxφBψ
19 12 18 pm2.61ian x=BxφBψ
20 19 imbi2d x=BωBxφBωBψ
21 sseq2 x=yBxBy
22 21 2 imbi12d x=yBxφByχ
23 22 imbi2d x=yBωBxφBωByχ
24 sseq2 x=sucyBxBsucy
25 24 3 imbi12d x=sucyBxφBsucyθ
26 25 imbi2d x=sucyBωBxφBωBsucyθ
27 sseq2 x=ABxBA
28 27 4 imbi12d x=ABxφBAτ
29 28 imbi2d x=ABωBxφBωBAτ
30 5 a1d BωBψ
31 vex yV
32 31 sucex sucyV
33 32 eqvinc sucy=Bxx=sucyx=B
34 5 1 imbitrrid x=BBωφ
35 3 biimpd x=sucyφθ
36 34 35 sylan9r x=sucyx=BBωθ
37 36 exlimiv xx=sucyx=BBωθ
38 33 37 sylbi sucy=BBωθ
39 38 eqcoms B=sucyBωθ
40 39 imim2i BsucyB=sucyBsucyBωθ
41 40 a1d BsucyB=sucyByχBsucyBωθ
42 41 com4r BωBsucyB=sucyByχBsucyθ
43 42 adantl yωBωBsucyB=sucyByχBsucyθ
44 df-ne Bsucy¬B=sucy
45 44 anbi2i BsucyBsucyBsucy¬B=sucy
46 annim Bsucy¬B=sucy¬BsucyB=sucy
47 45 46 bitri BsucyBsucy¬BsucyB=sucy
48 nnon BωBOn
49 nnon yωyOn
50 onsssuc BOnyOnByBsucy
51 onsuc yOnsucyOn
52 onelpss BOnsucyOnBsucyBsucyBsucy
53 51 52 sylan2 BOnyOnBsucyBsucyBsucy
54 50 53 bitrd BOnyOnByBsucyBsucy
55 48 49 54 syl2anr yωBωByBsucyBsucy
56 6 ex yωBωByχθ
57 56 a1ddd yωBωByχBsucyθ
58 57 a2d yωBωByχByBsucyθ
59 58 com23 yωBωByByχBsucyθ
60 55 59 sylbird yωBωBsucyBsucyByχBsucyθ
61 47 60 biimtrrid yωBω¬BsucyB=sucyByχBsucyθ
62 43 61 pm2.61d yωBωByχBsucyθ
63 62 ex yωBωByχBsucyθ
64 63 a2d yωBωByχBωBsucyθ
65 20 23 26 29 30 64 finds AωBωBAτ
66 65 imp31 AωBωBAτ