Metamath Proof Explorer


Theorem finnzfsuppd

Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024)

Ref Expression
Hypotheses finnzfsuppd.1 φ F V
finnzfsuppd.2 φ F Fn D
finnzfsuppd.3 φ Z U
finnzfsuppd.4 φ A Fin
finnzfsuppd.5 φ x D x A F x = Z
Assertion finnzfsuppd φ finSupp Z F

Proof

Step Hyp Ref Expression
1 finnzfsuppd.1 φ F V
2 finnzfsuppd.2 φ F Fn D
3 finnzfsuppd.3 φ Z U
4 finnzfsuppd.4 φ A Fin
5 finnzfsuppd.5 φ x D x A F x = Z
6 1 2 fndmexd φ D V
7 elsuppfn F Fn D D V Z U x supp Z F x D F x Z
8 2 6 3 7 syl3anc φ x supp Z F x D F x Z
9 8 biimpa φ x supp Z F x D F x Z
10 9 simpld φ x supp Z F x D
11 10 5 syldan φ x supp Z F x A F x = Z
12 9 simprd φ x supp Z F F x Z
13 12 neneqd φ x supp Z F ¬ F x = Z
14 11 13 olcnd φ x supp Z F x A
15 14 ex φ x supp Z F x A
16 15 ssrdv φ F supp Z A
17 4 16 ssfid φ F supp Z Fin
18 fnfun F Fn D Fun F
19 2 18 syl φ Fun F
20 funisfsupp Fun F F V Z U finSupp Z F F supp Z Fin
21 19 1 3 20 syl3anc φ finSupp Z F F supp Z Fin
22 17 21 mpbird φ finSupp Z F