Description: If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | finnzfsuppd.1 | |
|
finnzfsuppd.2 | |
||
finnzfsuppd.3 | |
||
finnzfsuppd.4 | |
||
finnzfsuppd.5 | |
||
Assertion | finnzfsuppd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finnzfsuppd.1 | |
|
2 | finnzfsuppd.2 | |
|
3 | finnzfsuppd.3 | |
|
4 | finnzfsuppd.4 | |
|
5 | finnzfsuppd.5 | |
|
6 | 1 2 | fndmexd | |
7 | elsuppfn | |
|
8 | 2 6 3 7 | syl3anc | |
9 | 8 | biimpa | |
10 | 9 | simpld | |
11 | 10 5 | syldan | |
12 | 9 | simprd | |
13 | 12 | neneqd | |
14 | 11 13 | olcnd | |
15 | 14 | ex | |
16 | 15 | ssrdv | |
17 | 4 16 | ssfid | |
18 | fnfun | |
|
19 | 2 18 | syl | |
20 | funisfsupp | |
|
21 | 19 1 3 20 | syl3anc | |
22 | 17 21 | mpbird | |