| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carsgval.1 |  | 
						
							| 2 |  | carsgval.2 |  | 
						
							| 3 |  | carsgsiga.1 |  | 
						
							| 4 |  | carsgsiga.2 |  | 
						
							| 5 |  | fiunelcarsg.1 |  | 
						
							| 6 |  | fiunelcarsg.2 |  | 
						
							| 7 |  | unieq |  | 
						
							| 8 |  | eqidd |  | 
						
							| 9 | 7 8 | eleq12d |  | 
						
							| 10 |  | unieq |  | 
						
							| 11 |  | eqidd |  | 
						
							| 12 | 10 11 | eleq12d |  | 
						
							| 13 |  | unieq |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 | 13 14 | eleq12d |  | 
						
							| 16 |  | unieq |  | 
						
							| 17 |  | eqidd |  | 
						
							| 18 | 16 17 | eleq12d |  | 
						
							| 19 |  | uni0 |  | 
						
							| 20 |  | difid |  | 
						
							| 21 | 19 20 | eqtr4i |  | 
						
							| 22 | 1 2 3 | baselcarsg |  | 
						
							| 23 | 1 2 22 | difelcarsg |  | 
						
							| 24 | 21 23 | eqeltrid |  | 
						
							| 25 |  | uniun |  | 
						
							| 26 |  | unisnv |  | 
						
							| 27 | 26 | uneq2i |  | 
						
							| 28 | 25 27 | eqtri |  | 
						
							| 29 | 1 | ad2antrr |  | 
						
							| 30 | 2 | ad2antrr |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 |  | simpll |  | 
						
							| 33 | 1 2 3 4 | carsgsigalem |  | 
						
							| 34 | 32 33 | syl3an1 |  | 
						
							| 35 | 6 | ad2antrr |  | 
						
							| 36 |  | simplrr |  | 
						
							| 37 | 36 | eldifad |  | 
						
							| 38 | 35 37 | sseldd |  | 
						
							| 39 | 29 30 31 34 38 | unelcarsg |  | 
						
							| 40 | 28 39 | eqeltrid |  | 
						
							| 41 | 40 | ex |  | 
						
							| 42 | 9 12 15 18 24 41 5 | findcard2d |  |