Metamath Proof Explorer


Theorem fiunelcarsg

Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020)

Ref Expression
Hypotheses carsgval.1 φOV
carsgval.2 φM:𝒫O0+∞
carsgsiga.1 φM=0
carsgsiga.2 φxωx𝒫OMx*yxMy
fiunelcarsg.1 φAFin
fiunelcarsg.2 φAtoCaraSigaM
Assertion fiunelcarsg φAtoCaraSigaM

Proof

Step Hyp Ref Expression
1 carsgval.1 φOV
2 carsgval.2 φM:𝒫O0+∞
3 carsgsiga.1 φM=0
4 carsgsiga.2 φxωx𝒫OMx*yxMy
5 fiunelcarsg.1 φAFin
6 fiunelcarsg.2 φAtoCaraSigaM
7 unieq a=a=
8 eqidd a=toCaraSigaM=toCaraSigaM
9 7 8 eleq12d a=atoCaraSigaMtoCaraSigaM
10 unieq a=ba=b
11 eqidd a=btoCaraSigaM=toCaraSigaM
12 10 11 eleq12d a=batoCaraSigaMbtoCaraSigaM
13 unieq a=bxa=bx
14 eqidd a=bxtoCaraSigaM=toCaraSigaM
15 13 14 eleq12d a=bxatoCaraSigaMbxtoCaraSigaM
16 unieq a=Aa=A
17 eqidd a=AtoCaraSigaM=toCaraSigaM
18 16 17 eleq12d a=AatoCaraSigaMAtoCaraSigaM
19 uni0 =
20 difid OO=
21 19 20 eqtr4i =OO
22 1 2 3 baselcarsg φOtoCaraSigaM
23 1 2 22 difelcarsg φOOtoCaraSigaM
24 21 23 eqeltrid φtoCaraSigaM
25 uniun bx=bx
26 unisnv x=x
27 26 uneq2i bx=bx
28 25 27 eqtri bx=bx
29 1 ad2antrr φbAxAbbtoCaraSigaMOV
30 2 ad2antrr φbAxAbbtoCaraSigaMM:𝒫O0+∞
31 simpr φbAxAbbtoCaraSigaMbtoCaraSigaM
32 simpll φbAxAbbtoCaraSigaMφ
33 1 2 3 4 carsgsigalem φe𝒫Of𝒫OMefMe+𝑒Mf
34 32 33 syl3an1 φbAxAbbtoCaraSigaMe𝒫Of𝒫OMefMe+𝑒Mf
35 6 ad2antrr φbAxAbbtoCaraSigaMAtoCaraSigaM
36 simplrr φbAxAbbtoCaraSigaMxAb
37 36 eldifad φbAxAbbtoCaraSigaMxA
38 35 37 sseldd φbAxAbbtoCaraSigaMxtoCaraSigaM
39 29 30 31 34 38 unelcarsg φbAxAbbtoCaraSigaMbxtoCaraSigaM
40 28 39 eqeltrid φbAxAbbtoCaraSigaMbxtoCaraSigaM
41 40 ex φbAxAbbtoCaraSigaMbxtoCaraSigaM
42 9 12 15 18 24 41 5 findcard2d φAtoCaraSigaM