Metamath Proof Explorer


Theorem flbi

Description: A condition equivalent to floor. (Contributed by NM, 11-Mar-2005) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion flbi ABA=BBAA<B+1

Proof

Step Hyp Ref Expression
1 flval AA=ιx|xAA<x+1
2 1 eqeq1d AA=Bιx|xAA<x+1=B
3 2 adantr ABA=Bιx|xAA<x+1=B
4 rebtwnz A∃!xxAA<x+1
5 breq1 x=BxABA
6 oveq1 x=Bx+1=B+1
7 6 breq2d x=BA<x+1A<B+1
8 5 7 anbi12d x=BxAA<x+1BAA<B+1
9 8 riota2 B∃!xxAA<x+1BAA<B+1ιx|xAA<x+1=B
10 4 9 sylan2 BABAA<B+1ιx|xAA<x+1=B
11 10 ancoms ABBAA<B+1ιx|xAA<x+1=B
12 3 11 bitr4d ABA=BBAA<B+1