Metamath Proof Explorer


Theorem fldcALTV

Description: The restriction of the category of division rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c C=UDivRing
drhmsubcALTV.j J=rC,sCrRingHoms
fldhmsubcALTV.d D=UField
fldhmsubcALTV.f F=rD,sDrRingHoms
Assertion fldcALTV UVRingCatALTVUcatJcatFCat

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c C=UDivRing
2 drhmsubcALTV.j J=rC,sCrRingHoms
3 fldhmsubcALTV.d D=UField
4 fldhmsubcALTV.f F=rD,sDrRingHoms
5 fvexd UVRingCatALTVUV
6 ovex rRingHomsV
7 2 6 fnmpoi JFnC×C
8 7 a1i UVJFnC×C
9 4 6 fnmpoi FFnD×D
10 9 a1i UVFFnD×D
11 inex1g UVUDivRingV
12 1 11 eqeltrid UVCV
13 df-field Field=DivRingCRing
14 inss1 DivRingCRingDivRing
15 13 14 eqsstri FieldDivRing
16 sslin FieldDivRingUFieldUDivRing
17 15 16 mp1i UVUFieldUDivRing
18 17 3 1 3sstr4g UVDC
19 5 8 10 12 18 rescabs UVRingCatALTVUcatJcatF=RingCatALTVUcatF
20 1 2 3 4 fldcatALTV UVRingCatALTVUcatFCat
21 19 20 eqeltrd UVRingCatALTVUcatJcatFCat