Metamath Proof Explorer


Theorem fldextrspunlem2

Description: Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k K = L 𝑠 F
fldextrspunfld.i I = L 𝑠 G
fldextrspunfld.j J = L 𝑠 H
fldextrspunfld.2 φ L Field
fldextrspunfld.3 φ F SubDRing I
fldextrspunfld.4 φ F SubDRing J
fldextrspunfld.5 φ G SubDRing L
fldextrspunfld.6 φ H SubDRing L
fldextrspunfld.7 φ J .:. K 0
fldextrspunfld.n N = RingSpan L
fldextrspunfld.c C = N G H
fldextrspunfld.e E = L 𝑠 C
Assertion fldextrspunlem2 φ C = L fldGen G H

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k K = L 𝑠 F
2 fldextrspunfld.i I = L 𝑠 G
3 fldextrspunfld.j J = L 𝑠 H
4 fldextrspunfld.2 φ L Field
5 fldextrspunfld.3 φ F SubDRing I
6 fldextrspunfld.4 φ F SubDRing J
7 fldextrspunfld.5 φ G SubDRing L
8 fldextrspunfld.6 φ H SubDRing L
9 fldextrspunfld.7 φ J .:. K 0
10 fldextrspunfld.n N = RingSpan L
11 fldextrspunfld.c C = N G H
12 fldextrspunfld.e E = L 𝑠 C
13 4 flddrngd φ L DivRing
14 13 drngringd φ L Ring
15 eqidd φ Base L = Base L
16 eqid Base L = Base L
17 16 sdrgss G SubDRing L G Base L
18 7 17 syl φ G Base L
19 16 sdrgss H SubDRing L H Base L
20 8 19 syl φ H Base L
21 18 20 unssd φ G H Base L
22 10 a1i φ N = RingSpan L
23 11 a1i φ C = N G H
24 16 13 21 fldgensdrg φ L fldGen G H SubDRing L
25 sdrgsubrg L fldGen G H SubDRing L L fldGen G H SubRing L
26 24 25 syl φ L fldGen G H SubRing L
27 16 13 21 fldgenssid φ G H L fldGen G H
28 14 15 21 22 23 26 27 rgspnmin φ C L fldGen G H
29 14 15 21 22 23 rgspncl φ C SubRing L
30 1 2 3 4 5 6 7 8 9 10 11 12 fldextrspunfld φ E Field
31 30 flddrngd φ E DivRing
32 12 31 eqeltrrid φ L 𝑠 C DivRing
33 issdrg C SubDRing L L DivRing C SubRing L L 𝑠 C DivRing
34 13 29 32 33 syl3anbrc φ C SubDRing L
35 14 15 21 22 23 rgspnssid φ G H C
36 16 13 34 35 fldgenssp φ L fldGen G H C
37 28 36 eqssd φ C = L fldGen G H