Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | flftg.l | |
|
Assertion | flftg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flftg.l | |
|
2 | isflf | |
|
3 | 1 | raleqi | |
4 | simpl1 | |
|
5 | topontop | |
|
6 | 4 5 | syl | |
7 | 1 6 | eqeltrrid | |
8 | tgclb | |
|
9 | 7 8 | sylibr | |
10 | bastg | |
|
11 | eleq2w | |
|
12 | sseq2 | |
|
13 | 12 | rexbidv | |
14 | 11 13 | imbi12d | |
15 | 14 | cbvralvw | |
16 | ssralv | |
|
17 | 15 16 | biimtrid | |
18 | 9 10 17 | 3syl | |
19 | tg2 | |
|
20 | r19.29 | |
|
21 | simpl | |
|
22 | simpr | |
|
23 | sstr2 | |
|
24 | 22 23 | syl5com | |
25 | 24 | reximdv | |
26 | 21 25 | embantd | |
27 | 26 | impcom | |
28 | 27 | rexlimivw | |
29 | 20 28 | syl | |
30 | 29 | ex | |
31 | 19 30 | syl5 | |
32 | 31 | expdimp | |
33 | 32 | ralrimiva | |
34 | 18 33 | impbid1 | |
35 | 3 34 | bitrid | |
36 | 35 | pm5.32da | |
37 | 2 36 | bitrd | |