Metamath Proof Explorer


Theorem flimcfil

Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis lmcau.1 J=MetOpenD
Assertion flimcfil D∞MetXAJfLimFFCauFilD

Proof

Step Hyp Ref Expression
1 lmcau.1 J=MetOpenD
2 eqid J=J
3 2 flimfil AJfLimFFFilJ
4 3 adantl D∞MetXAJfLimFFFilJ
5 1 mopnuni D∞MetXX=J
6 5 adantr D∞MetXAJfLimFX=J
7 6 fveq2d D∞MetXAJfLimFFilX=FilJ
8 4 7 eleqtrrd D∞MetXAJfLimFFFilX
9 2 flimelbas AJfLimFAJ
10 9 ad2antlr D∞MetXAJfLimFx+AJ
11 5 ad2antrr D∞MetXAJfLimFx+X=J
12 10 11 eleqtrrd D∞MetXAJfLimFx+AX
13 simplr D∞MetXAJfLimFx+AJfLimF
14 1 mopntop D∞MetXJTop
15 14 ad2antrr D∞MetXAJfLimFx+JTop
16 simpll D∞MetXAJfLimFx+D∞MetX
17 rpxr x+x*
18 17 adantl D∞MetXAJfLimFx+x*
19 1 blopn D∞MetXAXx*AballDxJ
20 16 12 18 19 syl3anc D∞MetXAJfLimFx+AballDxJ
21 simpr D∞MetXAJfLimFx+x+
22 blcntr D∞MetXAXx+AAballDx
23 16 12 21 22 syl3anc D∞MetXAJfLimFx+AAballDx
24 opnneip JTopAballDxJAAballDxAballDxneiJA
25 15 20 23 24 syl3anc D∞MetXAJfLimFx+AballDxneiJA
26 flimnei AJfLimFAballDxneiJAAballDxF
27 13 25 26 syl2anc D∞MetXAJfLimFx+AballDxF
28 oveq1 y=AyballDx=AballDx
29 28 eleq1d y=AyballDxFAballDxF
30 29 rspcev AXAballDxFyXyballDxF
31 12 27 30 syl2anc D∞MetXAJfLimFx+yXyballDxF
32 31 ralrimiva D∞MetXAJfLimFx+yXyballDxF
33 iscfil3 D∞MetXFCauFilDFFilXx+yXyballDxF
34 33 adantr D∞MetXAJfLimFFCauFilDFFilXx+yXyballDxF
35 8 32 34 mpbir2and D∞MetXAJfLimFFCauFilD