Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lmcau.1 | |
|
Assertion | flimcfil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcau.1 | |
|
2 | eqid | |
|
3 | 2 | flimfil | |
4 | 3 | adantl | |
5 | 1 | mopnuni | |
6 | 5 | adantr | |
7 | 6 | fveq2d | |
8 | 4 7 | eleqtrrd | |
9 | 2 | flimelbas | |
10 | 9 | ad2antlr | |
11 | 5 | ad2antrr | |
12 | 10 11 | eleqtrrd | |
13 | simplr | |
|
14 | 1 | mopntop | |
15 | 14 | ad2antrr | |
16 | simpll | |
|
17 | rpxr | |
|
18 | 17 | adantl | |
19 | 1 | blopn | |
20 | 16 12 18 19 | syl3anc | |
21 | simpr | |
|
22 | blcntr | |
|
23 | 16 12 21 22 | syl3anc | |
24 | opnneip | |
|
25 | 15 20 23 24 | syl3anc | |
26 | flimnei | |
|
27 | 13 25 26 | syl2anc | |
28 | oveq1 | |
|
29 | 28 | eleq1d | |
30 | 29 | rspcev | |
31 | 12 27 30 | syl2anc | |
32 | 31 | ralrimiva | |
33 | iscfil3 | |
|
34 | 33 | adantr | |
35 | 8 32 34 | mpbir2and | |