Metamath Proof Explorer


Theorem flodddiv4t2lthalf

Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Assertion flodddiv4t2lthalf N¬2NN42<N2

Proof

Step Hyp Ref Expression
1 flodddiv4lt N¬2NN4<N4
2 zre NN
3 4re 4
4 3 a1i N4
5 4ne0 40
6 5 a1i N40
7 2 4 6 redivcld NN4
8 7 flcld NN4
9 8 zred NN4
10 2rp 2+
11 10 a1i N2+
12 9 7 11 ltmul1d NN4<N4N42<N42
13 12 adantr N¬2NN4<N4N42<N42
14 1 13 mpbid N¬2NN42<N42
15 zcn NN
16 15 halfcld NN2
17 2cnd N2
18 2ne0 20
19 18 a1i N20
20 16 17 19 divcan1d NN222=N2
21 2cnne0 220
22 21 a1i N220
23 divdiv1 N220220N22=N22
24 15 22 22 23 syl3anc NN22=N22
25 2t2e4 22=4
26 25 a1i N22=4
27 26 oveq2d NN22=N4
28 24 27 eqtrd NN22=N4
29 28 oveq1d NN222=N42
30 20 29 eqtr3d NN2=N42
31 30 adantr N¬2NN2=N42
32 14 31 breqtrrd N¬2NN42<N2