Metamath Proof Explorer


Theorem flt4lem5

Description: In the context of the lemmas of pythagtrip , M and N are coprime. (Contributed by SN, 23-Aug-2024)

Ref Expression
Hypotheses flt4lem5.1 M=C+B+CB2
flt4lem5.2 N=C+BCB2
Assertion flt4lem5 ABCA2+B2=C2AgcdB=1¬2AMgcdN=1

Proof

Step Hyp Ref Expression
1 flt4lem5.1 M=C+B+CB2
2 flt4lem5.2 N=C+BCB2
3 simp3l ABCA2+B2=C2AgcdB=1¬2AAgcdB=1
4 simp11 ABCA2+B2=C2AgcdB=1¬2AA
5 simp12 ABCA2+B2=C2AgcdB=1¬2AB
6 coprmgcdb ABiiAiBi=1AgcdB=1
7 4 5 6 syl2anc ABCA2+B2=C2AgcdB=1¬2AiiAiBi=1AgcdB=1
8 3 7 mpbird ABCA2+B2=C2AgcdB=1¬2AiiAiBi=1
9 simplr ABCA2+B2=C2AgcdB=1¬2AiiMiNi
10 9 nnzd ABCA2+B2=C2AgcdB=1¬2AiiMiNi
11 1 pythagtriplem11 ABCA2+B2=C2AgcdB=1¬2AM
12 11 ad2antrr ABCA2+B2=C2AgcdB=1¬2AiiMiNM
13 12 nnsqcld ABCA2+B2=C2AgcdB=1¬2AiiMiNM2
14 13 nnzd ABCA2+B2=C2AgcdB=1¬2AiiMiNM2
15 2 pythagtriplem13 ABCA2+B2=C2AgcdB=1¬2AN
16 15 ad2antrr ABCA2+B2=C2AgcdB=1¬2AiiMiNN
17 16 nnsqcld ABCA2+B2=C2AgcdB=1¬2AiiMiNN2
18 17 nnzd ABCA2+B2=C2AgcdB=1¬2AiiMiNN2
19 simprl ABCA2+B2=C2AgcdB=1¬2AiiMiNiM
20 12 nnzd ABCA2+B2=C2AgcdB=1¬2AiiMiNM
21 2nn 2
22 21 a1i ABCA2+B2=C2AgcdB=1¬2AiiMiN2
23 dvdsexp2im iM2iMiM2
24 10 20 22 23 syl3anc ABCA2+B2=C2AgcdB=1¬2AiiMiNiMiM2
25 19 24 mpd ABCA2+B2=C2AgcdB=1¬2AiiMiNiM2
26 simprr ABCA2+B2=C2AgcdB=1¬2AiiMiNiN
27 16 nnzd ABCA2+B2=C2AgcdB=1¬2AiiMiNN
28 dvdsexp2im iN2iNiN2
29 10 27 22 28 syl3anc ABCA2+B2=C2AgcdB=1¬2AiiMiNiNiN2
30 26 29 mpd ABCA2+B2=C2AgcdB=1¬2AiiMiNiN2
31 10 14 18 25 30 dvds2subd ABCA2+B2=C2AgcdB=1¬2AiiMiNiM2N2
32 1 2 pythagtriplem15 ABCA2+B2=C2AgcdB=1¬2AA=M2N2
33 32 ad2antrr ABCA2+B2=C2AgcdB=1¬2AiiMiNA=M2N2
34 31 33 breqtrrd ABCA2+B2=C2AgcdB=1¬2AiiMiNiA
35 2z 2
36 35 a1i ABCA2+B2=C2AgcdB=1¬2AiiMiN2
37 12 16 nnmulcld ABCA2+B2=C2AgcdB=1¬2AiiMiN M N
38 37 nnzd ABCA2+B2=C2AgcdB=1¬2AiiMiN M N
39 10 20 27 26 dvdsmultr2d ABCA2+B2=C2AgcdB=1¬2AiiMiNi M N
40 10 36 38 39 dvdsmultr2d ABCA2+B2=C2AgcdB=1¬2AiiMiNi2 M N
41 1 2 pythagtriplem16 ABCA2+B2=C2AgcdB=1¬2AB=2 M N
42 41 ad2antrr ABCA2+B2=C2AgcdB=1¬2AiiMiNB=2 M N
43 40 42 breqtrrd ABCA2+B2=C2AgcdB=1¬2AiiMiNiB
44 34 43 jca ABCA2+B2=C2AgcdB=1¬2AiiMiNiAiB
45 44 ex ABCA2+B2=C2AgcdB=1¬2AiiMiNiAiB
46 45 imim1d ABCA2+B2=C2AgcdB=1¬2AiiAiBi=1iMiNi=1
47 46 ralimdva ABCA2+B2=C2AgcdB=1¬2AiiAiBi=1iiMiNi=1
48 8 47 mpd ABCA2+B2=C2AgcdB=1¬2AiiMiNi=1
49 coprmgcdb MNiiMiNi=1MgcdN=1
50 11 15 49 syl2anc ABCA2+B2=C2AgcdB=1¬2AiiMiNi=1MgcdN=1
51 48 50 mpbid ABCA2+B2=C2AgcdB=1¬2AMgcdN=1