Description: In the context of the lemmas of pythagtrip , M and N are coprime. (Contributed by SN, 23-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flt4lem5.1 | |
|
flt4lem5.2 | |
||
Assertion | flt4lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem5.1 | |
|
2 | flt4lem5.2 | |
|
3 | simp3l | |
|
4 | simp11 | |
|
5 | simp12 | |
|
6 | coprmgcdb | |
|
7 | 4 5 6 | syl2anc | |
8 | 3 7 | mpbird | |
9 | simplr | |
|
10 | 9 | nnzd | |
11 | 1 | pythagtriplem11 | |
12 | 11 | ad2antrr | |
13 | 12 | nnsqcld | |
14 | 13 | nnzd | |
15 | 2 | pythagtriplem13 | |
16 | 15 | ad2antrr | |
17 | 16 | nnsqcld | |
18 | 17 | nnzd | |
19 | simprl | |
|
20 | 12 | nnzd | |
21 | 2nn | |
|
22 | 21 | a1i | |
23 | dvdsexp2im | |
|
24 | 10 20 22 23 | syl3anc | |
25 | 19 24 | mpd | |
26 | simprr | |
|
27 | 16 | nnzd | |
28 | dvdsexp2im | |
|
29 | 10 27 22 28 | syl3anc | |
30 | 26 29 | mpd | |
31 | 10 14 18 25 30 | dvds2subd | |
32 | 1 2 | pythagtriplem15 | |
33 | 32 | ad2antrr | |
34 | 31 33 | breqtrrd | |
35 | 2z | |
|
36 | 35 | a1i | |
37 | 12 16 | nnmulcld | |
38 | 37 | nnzd | |
39 | 10 20 27 26 | dvdsmultr2d | |
40 | 10 36 38 39 | dvdsmultr2d | |
41 | 1 2 | pythagtriplem16 | |
42 | 41 | ad2antrr | |
43 | 40 42 | breqtrrd | |
44 | 34 43 | jca | |
45 | 44 | ex | |
46 | 45 | imim1d | |
47 | 46 | ralimdva | |
48 | 8 47 | mpd | |
49 | coprmgcdb | |
|
50 | 11 15 49 | syl2anc | |
51 | 48 50 | mpbid | |