Metamath Proof Explorer


Theorem flt4lem5elem

Description: Version of fltaccoprm and fltbccoprm where M is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd , dvds2addd , and prmdvdsexp , we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024)

Ref Expression
Hypotheses flt4lem5elem.m φM
flt4lem5elem.r φR
flt4lem5elem.s φS
flt4lem5elem.1 φM=R2+S2
flt4lem5elem.2 φRgcdS=1
Assertion flt4lem5elem φRgcdM=1SgcdM=1

Proof

Step Hyp Ref Expression
1 flt4lem5elem.m φM
2 flt4lem5elem.r φR
3 flt4lem5elem.s φS
4 flt4lem5elem.1 φM=R2+S2
5 flt4lem5elem.2 φRgcdS=1
6 2 3 prmdvdsncoprmbd φppRpSRgcdS1
7 6 necon2bbid φRgcdS=1¬ppRpS
8 5 7 mpbid φ¬ppRpS
9 simprl φppRpMpR
10 simplr φppRpMp
11 prmz pp
12 10 11 syl φppRpMp
13 1 nnzd φM
14 13 ad2antrr φppRpMM
15 2 nnsqcld φR2
16 15 nnzd φR2
17 16 ad2antrr φppRpMR2
18 simprr φppRpMpM
19 2 nnzd φR
20 19 ad2antrr φppRpMR
21 prmdvdssq pRpRpR2
22 10 20 21 syl2anc φppRpMpRpR2
23 9 22 mpbid φppRpMpR2
24 12 14 17 18 23 dvds2subd φppRpMpMR2
25 15 nncnd φR2
26 25 ad2antrr φppRpMR2
27 3 nnsqcld φS2
28 27 nncnd φS2
29 28 ad2antrr φppRpMS2
30 4 ad2antrr φppRpMM=R2+S2
31 26 29 30 mvrladdd φppRpMMR2=S2
32 24 31 breqtrd φppRpMpS2
33 3 nnzd φS
34 33 ad2antrr φppRpMS
35 prmdvdssq pSpSpS2
36 10 34 35 syl2anc φppRpMpSpS2
37 32 36 mpbird φppRpMpS
38 9 37 jca φppRpMpRpS
39 38 ex φppRpMpRpS
40 39 reximdva φppRpMppRpS
41 8 40 mtod φ¬ppRpM
42 2 1 prmdvdsncoprmbd φppRpMRgcdM1
43 42 necon2bbid φRgcdM=1¬ppRpM
44 41 43 mpbird φRgcdM=1
45 simplr φppSpMp
46 45 11 syl φppSpMp
47 13 ad2antrr φppSpMM
48 27 nnzd φS2
49 48 ad2antrr φppSpMS2
50 simprr φppSpMpM
51 simprl φppSpMpS
52 33 ad2antrr φppSpMS
53 45 52 35 syl2anc φppSpMpSpS2
54 51 53 mpbid φppSpMpS2
55 46 47 49 50 54 dvds2subd φppSpMpMS2
56 25 ad2antrr φppSpMR2
57 28 ad2antrr φppSpMS2
58 4 ad2antrr φppSpMM=R2+S2
59 56 57 58 mvrraddd φppSpMMS2=R2
60 55 59 breqtrd φppSpMpR2
61 19 ad2antrr φppSpMR
62 45 61 21 syl2anc φppSpMpRpR2
63 60 62 mpbird φppSpMpR
64 63 51 jca φppSpMpRpS
65 64 ex φppSpMpRpS
66 65 reximdva φppSpMppRpS
67 8 66 mtod φ¬ppSpM
68 3 1 prmdvdsncoprmbd φppSpMSgcdM1
69 68 necon2bbid φSgcdM=1¬ppSpM
70 67 69 mpbird φSgcdM=1
71 44 70 jca φRgcdM=1SgcdM=1