Description: The valid Godel formulas of height 0 is the set of all formulas of the form v_i e. v_j ("Godel-set of membership") coded as <. (/) , <. i , j >. >. . (Contributed by AV, 15-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | fmla0xp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmla0 | |
|
2 | rabab | |
|
3 | eqabcb | |
|
4 | goel | |
|
5 | 4 | eqeq2d | |
6 | 5 | 2rexbiia | |
7 | 0ex | |
|
8 | 7 | snid | |
9 | 8 | a1i | |
10 | opelxpi | |
|
11 | 9 10 | opelxpd | |
12 | eleq1 | |
|
13 | 11 12 | syl5ibrcom | |
14 | 13 | rexlimivv | |
15 | elxpi | |
|
16 | elsni | |
|
17 | 16 | opeq1d | |
18 | 17 | eqeq2d | |
19 | 18 | adantr | |
20 | elxpi | |
|
21 | simprr | |
|
22 | simpl | |
|
23 | opeq2 | |
|
24 | 23 | adantr | |
25 | 24 | adantl | |
26 | 22 25 | eqtrd | |
27 | 21 26 | jca | |
28 | 27 | ex | |
29 | 28 | 2eximdv | |
30 | r2ex | |
|
31 | 29 30 | syl6ibr | |
32 | 20 31 | syl5com | |
33 | 32 | adantl | |
34 | 19 33 | sylbid | |
35 | 34 | impcom | |
36 | 35 | exlimivv | |
37 | 15 36 | syl | |
38 | 14 37 | impbii | |
39 | 6 38 | bitri | |
40 | 3 39 | mpgbir | |
41 | 1 2 40 | 3eqtri | |