Metamath Proof Explorer


Theorem fmla0xp

Description: The valid Godel formulas of height 0 is the set of all formulas of the form v_i e. v_j ("Godel-set of membership") coded as <. (/) , <. i , j >. >. . (Contributed by AV, 15-Sep-2023)

Ref Expression
Assertion fmla0xp Fmla=×ω×ω

Proof

Step Hyp Ref Expression
1 fmla0 Fmla=xV|iωjωx=i𝑔j
2 rabab xV|iωjωx=i𝑔j=x|iωjωx=i𝑔j
3 eqabcb x|iωjωx=i𝑔j=×ω×ωxiωjωx=i𝑔jx×ω×ω
4 goel iωjωi𝑔j=ij
5 4 eqeq2d iωjωx=i𝑔jx=ij
6 5 2rexbiia iωjωx=i𝑔jiωjωx=ij
7 0ex V
8 7 snid
9 8 a1i iωjω
10 opelxpi iωjωijω×ω
11 9 10 opelxpd iωjωij×ω×ω
12 eleq1 x=ijx×ω×ωij×ω×ω
13 11 12 syl5ibrcom iωjωx=ijx×ω×ω
14 13 rexlimivv iωjωx=ijx×ω×ω
15 elxpi x×ω×ωyzx=yzyzω×ω
16 elsni yy=
17 16 opeq1d yyz=z
18 17 eqeq2d yx=yzx=z
19 18 adantr yzω×ωx=yzx=z
20 elxpi zω×ωijz=ijiωjω
21 simprr x=zz=ijiωjωiωjω
22 simpl x=zz=ijiωjωx=z
23 opeq2 z=ijz=ij
24 23 adantr z=ijiωjωz=ij
25 24 adantl x=zz=ijiωjωz=ij
26 22 25 eqtrd x=zz=ijiωjωx=ij
27 21 26 jca x=zz=ijiωjωiωjωx=ij
28 27 ex x=zz=ijiωjωiωjωx=ij
29 28 2eximdv x=zijz=ijiωjωijiωjωx=ij
30 r2ex iωjωx=ijijiωjωx=ij
31 29 30 syl6ibr x=zijz=ijiωjωiωjωx=ij
32 20 31 syl5com zω×ωx=ziωjωx=ij
33 32 adantl yzω×ωx=ziωjωx=ij
34 19 33 sylbid yzω×ωx=yziωjωx=ij
35 34 impcom x=yzyzω×ωiωjωx=ij
36 35 exlimivv yzx=yzyzω×ωiωjωx=ij
37 15 36 syl x×ω×ωiωjωx=ij
38 14 37 impbii iωjωx=ijx×ω×ω
39 6 38 bitri iωjωx=i𝑔jx×ω×ω
40 3 39 mpgbir x|iωjωx=i𝑔j=×ω×ω
41 1 2 40 3eqtri Fmla=×ω×ω