Description: Express a singleton function in maps-to notation. Deduction form of fmptsng . (Contributed by AV, 4-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmptsnd.1 | |
|
fmptsnd.2 | |
||
fmptsnd.3 | |
||
Assertion | fmptsnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptsnd.1 | |
|
2 | fmptsnd.2 | |
|
3 | fmptsnd.3 | |
|
4 | velsn | |
|
5 | 4 | bicomi | |
6 | 5 | anbi1i | |
7 | 6 | opabbii | |
8 | velsn | |
|
9 | eqidd | |
|
10 | eqidd | |
|
11 | sbcan | |
|
12 | sbcg | |
|
13 | 3 12 | syl | |
14 | eqsbc1 | |
|
15 | 3 14 | syl | |
16 | 13 15 | anbi12d | |
17 | 11 16 | bitrid | |
18 | 17 | sbcbidv | |
19 | eqeq1 | |
|
20 | 19 | adantl | |
21 | 1 | eqeq2d | |
22 | 20 21 | anbi12d | |
23 | 2 22 | sbcied | |
24 | 18 23 | bitrd | |
25 | 9 10 24 | mpbir2and | |
26 | opelopabsb | |
|
27 | 25 26 | sylibr | |
28 | eleq1 | |
|
29 | 27 28 | syl5ibrcom | |
30 | 8 29 | biimtrid | |
31 | elopab | |
|
32 | opeq12 | |
|
33 | 32 | adantl | |
34 | 33 | eqeq2d | |
35 | 1 | adantrr | |
36 | 35 | opeq2d | |
37 | opex | |
|
38 | 37 | snid | |
39 | 36 38 | eqeltrdi | |
40 | eleq1 | |
|
41 | 39 40 | syl5ibrcom | |
42 | 34 41 | sylbid | |
43 | 42 | ex | |
44 | 43 | impcomd | |
45 | 44 | exlimdvv | |
46 | 31 45 | biimtrid | |
47 | 30 46 | impbid | |
48 | 47 | eqrdv | |
49 | df-mpt | |
|
50 | 49 | a1i | |
51 | 7 48 50 | 3eqtr4a | |