Metamath Proof Explorer


Theorem fmptsnd

Description: Express a singleton function in maps-to notation. Deduction form of fmptsng . (Contributed by AV, 4-Aug-2019)

Ref Expression
Hypotheses fmptsnd.1 φx=AB=C
fmptsnd.2 φAV
fmptsnd.3 φCW
Assertion fmptsnd φAC=xAB

Proof

Step Hyp Ref Expression
1 fmptsnd.1 φx=AB=C
2 fmptsnd.2 φAV
3 fmptsnd.3 φCW
4 velsn xAx=A
5 4 bicomi x=AxA
6 5 anbi1i x=Ay=BxAy=B
7 6 opabbii xy|x=Ay=B=xy|xAy=B
8 velsn pACp=AC
9 eqidd φA=A
10 eqidd φC=C
11 sbcan [˙C/y]˙x=Ay=B[˙C/y]˙x=A[˙C/y]˙y=B
12 sbcg CW[˙C/y]˙x=Ax=A
13 3 12 syl φ[˙C/y]˙x=Ax=A
14 eqsbc1 CW[˙C/y]˙y=BC=B
15 3 14 syl φ[˙C/y]˙y=BC=B
16 13 15 anbi12d φ[˙C/y]˙x=A[˙C/y]˙y=Bx=AC=B
17 11 16 bitrid φ[˙C/y]˙x=Ay=Bx=AC=B
18 17 sbcbidv φ[˙A/x]˙[˙C/y]˙x=Ay=B[˙A/x]˙x=AC=B
19 eqeq1 x=Ax=AA=A
20 19 adantl φx=Ax=AA=A
21 1 eqeq2d φx=AC=BC=C
22 20 21 anbi12d φx=Ax=AC=BA=AC=C
23 2 22 sbcied φ[˙A/x]˙x=AC=BA=AC=C
24 18 23 bitrd φ[˙A/x]˙[˙C/y]˙x=Ay=BA=AC=C
25 9 10 24 mpbir2and φ[˙A/x]˙[˙C/y]˙x=Ay=B
26 opelopabsb ACxy|x=Ay=B[˙A/x]˙[˙C/y]˙x=Ay=B
27 25 26 sylibr φACxy|x=Ay=B
28 eleq1 p=ACpxy|x=Ay=BACxy|x=Ay=B
29 27 28 syl5ibrcom φp=ACpxy|x=Ay=B
30 8 29 biimtrid φpACpxy|x=Ay=B
31 elopab pxy|x=Ay=Bxyp=xyx=Ay=B
32 opeq12 x=Ay=Bxy=AB
33 32 adantl φx=Ay=Bxy=AB
34 33 eqeq2d φx=Ay=Bp=xyp=AB
35 1 adantrr φx=Ay=BB=C
36 35 opeq2d φx=Ay=BAB=AC
37 opex ACV
38 37 snid ACAC
39 36 38 eqeltrdi φx=Ay=BABAC
40 eleq1 p=ABpACABAC
41 39 40 syl5ibrcom φx=Ay=Bp=ABpAC
42 34 41 sylbid φx=Ay=Bp=xypAC
43 42 ex φx=Ay=Bp=xypAC
44 43 impcomd φp=xyx=Ay=BpAC
45 44 exlimdvv φxyp=xyx=Ay=BpAC
46 31 45 biimtrid φpxy|x=Ay=BpAC
47 30 46 impbid φpACpxy|x=Ay=B
48 47 eqrdv φAC=xy|x=Ay=B
49 df-mpt xAB=xy|xAy=B
50 49 a1i φxAB=xy|xAy=B
51 7 48 50 3eqtr4a φAC=xAB