Metamath Proof Explorer


Theorem fmtnoodd

Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021)

Ref Expression
Assertion fmtnoodd N 0 ¬ 2 FermatNo N

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N 0 2
3 id N 0 N 0
4 2 3 nnexpcld N 0 2 N
5 nnm1nn0 2 N 2 N 1 0
6 4 5 syl N 0 2 N 1 0
7 2 6 nnexpcld N 0 2 2 N 1
8 7 nnzd N 0 2 2 N 1
9 oveq2 k = 2 2 N 1 2 k = 2 2 2 N 1
10 9 oveq1d k = 2 2 N 1 2 k + 1 = 2 2 2 N 1 + 1
11 fmtno N 0 FermatNo N = 2 2 N + 1
12 10 11 eqeqan12rd N 0 k = 2 2 N 1 2 k + 1 = FermatNo N 2 2 2 N 1 + 1 = 2 2 N + 1
13 2cnd N 0 2
14 7 nncnd N 0 2 2 N 1
15 13 14 mulcomd N 0 2 2 2 N 1 = 2 2 N 1 2
16 expm1t 2 2 N 2 2 N = 2 2 N 1 2
17 13 4 16 syl2anc N 0 2 2 N = 2 2 N 1 2
18 15 17 eqtr4d N 0 2 2 2 N 1 = 2 2 N
19 18 oveq1d N 0 2 2 2 N 1 + 1 = 2 2 N + 1
20 8 12 19 rspcedvd N 0 k 2 k + 1 = FermatNo N
21 fmtnonn N 0 FermatNo N
22 21 nnzd N 0 FermatNo N
23 odd2np1 FermatNo N ¬ 2 FermatNo N k 2 k + 1 = FermatNo N
24 22 23 syl N 0 ¬ 2 FermatNo N k 2 k + 1 = FermatNo N
25 20 24 mpbird N 0 ¬ 2 FermatNo N