Metamath Proof Explorer


Theorem fmtnoodd

Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021)

Ref Expression
Assertion fmtnoodd N0¬2FermatNoN

Proof

Step Hyp Ref Expression
1 2nn 2
2 1 a1i N02
3 id N0N0
4 2 3 nnexpcld N02N
5 nnm1nn0 2N2N10
6 4 5 syl N02N10
7 2 6 nnexpcld N022N1
8 7 nnzd N022N1
9 oveq2 k=22N12k=222N1
10 9 oveq1d k=22N12k+1=222N1+1
11 fmtno N0FermatNoN=22N+1
12 10 11 eqeqan12rd N0k=22N12k+1=FermatNoN222N1+1=22N+1
13 2cnd N02
14 7 nncnd N022N1
15 13 14 mulcomd N0222N1=22N12
16 expm1t 22N22N=22N12
17 13 4 16 syl2anc N022N=22N12
18 15 17 eqtr4d N0222N1=22N
19 18 oveq1d N0222N1+1=22N+1
20 8 12 19 rspcedvd N0k2k+1=FermatNoN
21 fmtnonn N0FermatNoN
22 21 nnzd N0FermatNoN
23 odd2np1 FermatNoN¬2FermatNoNk2k+1=FermatNoN
24 22 23 syl N0¬2FermatNoNk2k+1=FermatNoN
25 20 24 mpbird N0¬2FermatNoN