Metamath Proof Explorer


Theorem fnbrafv2b

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion fnbrafv2b FFnABAF''''B=CBFC

Proof

Step Hyp Ref Expression
1 eqid F''''B=F''''B
2 fundmdfat FunFBdomFFdefAtB
3 2 funfni FFnABAFdefAtB
4 dfatafv2ex FdefAtBF''''BV
5 3 4 syl FFnABAF''''BV
6 eqeq2 x=F''''BF''''B=xF''''B=F''''B
7 breq2 x=F''''BBFxBFF''''B
8 6 7 bibi12d x=F''''BF''''B=xBFxF''''B=F''''BBFF''''B
9 8 adantl FFnABAx=F''''BF''''B=xBFxF''''B=F''''BBFF''''B
10 fneu FFnABA∃!xBFx
11 tz6.12c-afv2 ∃!xBFxF''''B=xBFx
12 10 11 syl FFnABAF''''B=xBFx
13 5 9 12 vtocld FFnABAF''''B=F''''BBFF''''B
14 1 13 mpbii FFnABABFF''''B
15 breq2 F''''B=CBFF''''BBFC
16 14 15 syl5ibcom FFnABAF''''B=CBFC
17 fnfun FFnAFunF
18 funbrafv2 FunFBFCF''''B=C
19 17 18 syl FFnABFCF''''B=C
20 19 adantr FFnABABFCF''''B=C
21 16 20 impbid FFnABAF''''B=CBFC