Metamath Proof Explorer


Theorem fnfi

Description: A version of fnex for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion fnfi FFnAAFinFFin

Proof

Step Hyp Ref Expression
1 fnresdm FFnAFA=F
2 1 adantr FFnAAFinFA=F
3 reseq2 x=Fx=F
4 3 eleq1d x=FxFinFFin
5 4 imbi2d x=FFnAAFinFxFinFFnAAFinFFin
6 reseq2 x=yFx=Fy
7 6 eleq1d x=yFxFinFyFin
8 7 imbi2d x=yFFnAAFinFxFinFFnAAFinFyFin
9 reseq2 x=yzFx=Fyz
10 9 eleq1d x=yzFxFinFyzFin
11 10 imbi2d x=yzFFnAAFinFxFinFFnAAFinFyzFin
12 reseq2 x=AFx=FA
13 12 eleq1d x=AFxFinFAFin
14 13 imbi2d x=AFFnAAFinFxFinFFnAAFinFAFin
15 res0 F=
16 0fin Fin
17 15 16 eqeltri FFin
18 17 a1i FFnAAFinFFin
19 resundi Fyz=FyFz
20 snfi zFzFin
21 fnfun FFnAFunF
22 funressn FunFFzzFz
23 21 22 syl FFnAFzzFz
24 23 adantr FFnAAFinFzzFz
25 ssfi zFzFinFzzFzFzFin
26 20 24 25 sylancr FFnAAFinFzFin
27 unfi FyFinFzFinFyFzFin
28 26 27 sylan2 FyFinFFnAAFinFyFzFin
29 19 28 eqeltrid FyFinFFnAAFinFyzFin
30 29 expcom FFnAAFinFyFinFyzFin
31 30 a2i FFnAAFinFyFinFFnAAFinFyzFin
32 31 a1i yFinFFnAAFinFyFinFFnAAFinFyzFin
33 5 8 11 14 18 32 findcard2 AFinFFnAAFinFAFin
34 33 anabsi7 FFnAAFinFAFin
35 2 34 eqeltrrd FFnAAFinFFin