Metamath Proof Explorer


Theorem fourierdlem7

Description: The difference between the periodic sawtooth function and the identity function is decreasing. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem7.a φA
fourierdlem7.b φB
fourierdlem7.altb φA<B
fourierdlem7.t T=BA
fourierdlem7.e E=xx+BxTT
fourierdlem7.x φX
fourierdlem7.y φY
fourierdlem7.xlty φXY
Assertion fourierdlem7 φEYYEXX

Proof

Step Hyp Ref Expression
1 fourierdlem7.a φA
2 fourierdlem7.b φB
3 fourierdlem7.altb φA<B
4 fourierdlem7.t T=BA
5 fourierdlem7.e E=xx+BxTT
6 fourierdlem7.x φX
7 fourierdlem7.y φY
8 fourierdlem7.xlty φXY
9 2 7 resubcld φBY
10 2 1 resubcld φBA
11 4 10 eqeltrid φT
12 1 2 posdifd φA<B0<BA
13 3 12 mpbid φ0<BA
14 13 4 breqtrrdi φ0<T
15 14 gt0ne0d φT0
16 9 11 15 redivcld φBYT
17 2 6 resubcld φBX
18 17 11 15 redivcld φBXT
19 11 14 elrpd φT+
20 6 7 2 8 lesub2dd φBYBX
21 9 17 19 20 lediv1dd φBYTBXT
22 flwordi BYTBXTBYTBXTBYTBXT
23 16 18 21 22 syl3anc φBYTBXT
24 16 flcld φBYT
25 24 zred φBYT
26 18 flcld φBXT
27 26 zred φBXT
28 25 27 19 lemul1d φBYTBXTBYTTBXTT
29 23 28 mpbid φBYTTBXTT
30 5 a1i φE=xx+BxTT
31 id x=Yx=Y
32 oveq2 x=YBx=BY
33 32 oveq1d x=YBxT=BYT
34 33 fveq2d x=YBxT=BYT
35 34 oveq1d x=YBxTT=BYTT
36 31 35 oveq12d x=Yx+BxTT=Y+BYTT
37 36 adantl φx=Yx+BxTT=Y+BYTT
38 25 11 remulcld φBYTT
39 7 38 readdcld φY+BYTT
40 30 37 7 39 fvmptd φEY=Y+BYTT
41 40 oveq1d φEYY=Y+BYTT-Y
42 7 recnd φY
43 38 recnd φBYTT
44 42 43 pncan2d φY+BYTT-Y=BYTT
45 41 44 eqtrd φEYY=BYTT
46 id x=Xx=X
47 oveq2 x=XBx=BX
48 47 oveq1d x=XBxT=BXT
49 48 fveq2d x=XBxT=BXT
50 49 oveq1d x=XBxTT=BXTT
51 46 50 oveq12d x=Xx+BxTT=X+BXTT
52 51 adantl φx=Xx+BxTT=X+BXTT
53 27 11 remulcld φBXTT
54 6 53 readdcld φX+BXTT
55 30 52 6 54 fvmptd φEX=X+BXTT
56 55 oveq1d φEXX=X+BXTT-X
57 6 recnd φX
58 53 recnd φBXTT
59 57 58 pncan2d φX+BXTT-X=BXTT
60 56 59 eqtrd φEXX=BXTT
61 29 45 60 3brtr4d φEYYEXX